• Previous Article
    Pathwise solutions of SPDEs driven by Hölder-continuous integrators with exponent larger than $1/2$ and random dynamical systems
  • DCDS Home
  • This Issue
  • Next Article
    On the convergence of statistical solutions of the 3D Navier-Stokes-$\alpha$ model as $\alpha$ vanishes
January  2014, 34(1): 51-77. doi: 10.3934/dcds.2014.34.51

On differential equations with delay in Banach spaces and attractors for retarded lattice dynamical systems

1. 

Dpto. Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, Campus Reina Mercedes, Apdo. de Correos 1160, 41080 Sevilla

2. 

Department d'Economia Aplicada, Facultat d'Economia, Universitat de València, Campus del Tarongers s/n, 46022-València, Spain

3. 

Centro de Investigación Operativa, Universidad Miguel Hernández de Elche, Avda. de la Universidad, s/n, 03202 Elche

Received  November 2012 Revised  January 2013 Published  June 2013

In this paper we first prove a rather general theorem about existence of solutions for an abstract differential equation in a Banach space by assuming that the nonlinear term is in some sense weakly continuous.
    We then apply this result to a lattice dynamical system with delay, proving also the existence of a global compact attractor for such system.
Citation: Tomás Caraballo, Francisco Morillas, José Valero. On differential equations with delay in Banach spaces and attractors for retarded lattice dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (1) : 51-77. doi: 10.3934/dcds.2014.34.51
References:
[1]

V. S. Afraĭmovich and V. I. Nekorkin, Chaos of traveling waves in a discrete chain of diffusively coupled maps,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 4 (1994), 631.  doi: 10.1142/S0218127494000459.  Google Scholar

[2]

A. Y. Abdallah, Exponential attractors for first-order lattice dynamical systems,, J. Math. Anal. Appl., 339 (2008), 217.  doi: 10.1016/j.jmaa.2007.06.054.  Google Scholar

[3]

J. M. Amigó, Á. Giménez, F. Morillas and J. Valero, Attractors for a lattice dynamical system generated by non-Newtonian fluids modeling suspensions,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 2681.  doi: 10.1142/S0218127410027295.  Google Scholar

[4]

V. Barbu, "Nonlinear Semigroups and Differential Equations in Banach Spaces,", Editura Academiei Republicii Socialiste România, (1976).   Google Scholar

[5]

P. W. Bates and A. Chmaj, A discrete convolution model for phase transitions,, Arch. Ration. Mech. Anal., 150 (1999), 281.  doi: 10.1007/s002050050189.  Google Scholar

[6]

P. W. Bates, H. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems,, Stochastics & Dynamics, 6 (2006), 1.  doi: 10.1142/S0219493706001621.  Google Scholar

[7]

P. W. Bates, K. Lu and B. Wang, Attractors for lattice dynamical systems,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), 143.  doi: 10.1142/S0218127401002031.  Google Scholar

[8]

J. Bell, Some threshhold results for models of myelinated nerves,, Mathematical Biosciences, 54 (1981), 181.  doi: 10.1016/0025-5564(81)90085-7.  Google Scholar

[9]

J. Bell and C. Cosner, Threshold behaviour and propagation for nonlinear differential-difference systems motivated by modeling myelinated axons,, Quarterly Appl. Math., 42 (1984), 1.   Google Scholar

[10]

W.-J. Beyn and S. Yu. Pilyugin, Attractors of reaction diffusion systems on infinite lattices,, J. Dynam. Differential Equations, 15 (2003), 485.  doi: 10.1023/B:JODY.0000009745.41889.30.  Google Scholar

[11]

T. Caraballo and K. Lu, Attractors for stochastic lattice dynamical systems with a multiplicative noise,, Front. Math. China, 3 (2008), 317.  doi: 10.1007/s11464-008-0028-7.  Google Scholar

[12]

T. Caraballo, F. Morillas and J. Valero, Random Attractors for stochastic lattice systems with non-Lipschitz nonlinearity,, J. Diff. Equat. App., 17 (2011), 161.  doi: 10.1080/10236198.2010.549010.  Google Scholar

[13]

T. Caraballo, F. Morillas and J. Valero, Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities,, J. Differential Equations, 253 (2012), 667.  doi: 10.1016/j.jde.2012.03.020.  Google Scholar

[14]

S.-N. Chow and J. Mallet-Paret, Pattern formation and spatial chaos in lattice dynamical systems. I,, IEEE Trans. Circuits Syst., 42 (1995), 746.  doi: 10.1109/81.473583.  Google Scholar

[15]

S.-N. Chow, J. Mallet-Paret and W. Shen, Traveling waves in lattice dynamical systems,, J. Differential Equations, 149 (1998), 248.  doi: 10.1006/jdeq.1998.3478.  Google Scholar

[16]

S.-N. Chow, J. Mallet-Paret and E. S. Van Vleck, Pattern formation and spatial chaos in spatially discrete evolution equations,, Random Computational Dynamics, 4 (1996), 109.   Google Scholar

[17]

S.-N. Chow and W. Shen, Dynamics in a discrete Nagumo equation: Spatial topological chaos,, SIAM J. Appl. Math., 55 (1995), 1764.  doi: 10.1137/S0036139994261757.  Google Scholar

[18]

L. O. Chua and T. Roska, The CNN paradigm,, IEEE Trans. Circuits Syst., 40 (1993), 147.   Google Scholar

[19]

L. O. Chua and L. Yang, Cellular neural networks: Theory,, IEEE Trans. Circuits Syst., 35 (1988), 1257.  doi: 10.1109/31.7600.  Google Scholar

[20]

L. O. Chua and L. Yang, Cellular neural neetworks: Applications,, IEEE Trans. Circuits Syst., 35 (1988), 1273.  doi: 10.1109/31.7601.  Google Scholar

[21]

A. Pérez-Muñuzuri, V. Pérez-Muñuzuri, V. Pérez-Villar and L. O. Chua, Spiral waves on a 2-D array of nonlinear circuits,, IEEE Trans. Circuits Syst., 40 (1993), 872.   Google Scholar

[22]

R. Dogaru and L. O. Chua, Edge of chaos and local activity domain of Fitz-Hugh-Nagumo equation,, Internat. J. Bifur. Chaos, 8 (1988), 211.  doi: 10.1142/S0218127498000152.  Google Scholar

[23]

T. Erneux and G. Nicolis, Propagating waves in discrete bistable reaction diffusion systems,, Physica D, 67 (1993), 237.  doi: 10.1016/0167-2789(93)90208-I.  Google Scholar

[24]

M. Gobbino and M. Sardella, On the connectedness of attractors for dynamical systems,, J. Differential Equations, 133 (1997), 1.  doi: 10.1006/jdeq.1996.3166.  Google Scholar

[25]

A. M. Gomaa, On existence of solutions and solution sets of differential equations and differential inclusions with delay in Banach spaces,, J. Egyptian Math. Soc., 20 (2012), 79.  doi: 10.1016/j.joems.2012.08.007.  Google Scholar

[26]

X. Han, Random attractors for stochastic sine-Gordon lattice systems with multiplicative white noise,, J. Math. Anal. Appl., 376 (2011), 481.  doi: 10.1016/j.jmaa.2010.11.032.  Google Scholar

[27]

X. Han, W. Shen and S. Zhou, Random attractors for stochastic lattice dynamical systems in weighted spaces,, J. Differential Equations, 250 (2011), 1235.  doi: 10.1016/j.jde.2010.10.018.  Google Scholar

[28]

R. Kapral, Discrete models for chemically reacting systems,, J. Math. Chem., 6 (1991), 113.  doi: 10.1007/BF01192578.  Google Scholar

[29]

S. Kato, On existence and uniqueness conditions for nonlinear ordinary differential equations in Banach spaces,, Funkcialaj Ekvacioj., 19 (1976), 239.   Google Scholar

[30]

J. P. Keener, Propagation and its failure in coupled systems of discrete excitable cells,, SIAM J. Appl. Math., 47 (1987), 556.  doi: 10.1137/0147038.  Google Scholar

[31]

J. P. Keener, The effects of discrete gap junction coupling on propagation in myocardium,, J. Theor. Biol., 148 (1991), 49.   Google Scholar

[32]

O. A. Ladyzhenskaya, "Attractors for Semigroups and Evolution Equations,", Cambridge University Press, (1991).  doi: 10.1017/CBO9780511569418.  Google Scholar

[33]

J. P. Laplante and T. Erneux, Propagating failure in arrays of coupled bistable chemical reactors,, J. Phys. Chem., 96 (1992), 4931.   Google Scholar

[34]

V. Lakshmikantham, A. R. Mitchell and R. W. Mitchell, On the existence of solutions of differential equations of retarde type in a Banach space,, Annales Polonici Mathematici, 35 (): 253.   Google Scholar

[35]

Y. Lv and J. Sun, Dynamical behavior for stochastic lattice systems,, Chaos, 27 (2006), 1080.  doi: 10.1016/j.chaos.2005.04.089.  Google Scholar

[36]

J. Mallet-Paret, The global structure of traveling waves in spatially discrete dynamical systems,, J. Dynam. Differential Equations, 11 (1999), 49.  doi: 10.1023/A:1021841618074.  Google Scholar

[37]

V. S. Melnik and J. Valero, On attractors of multi-valued semi-flows and differential inclusions,, Set-Valued Anal., 6 (1998), 83.  doi: 10.1023/A:1008608431399.  Google Scholar

[38]

F. Morillas and J. Valero, Peano's theorem and attractors for lattice dynamical systems,, Internat. J. Bifur. Chaos, 19 (2009), 557.  doi: 10.1142/S0218127409023196.  Google Scholar

[39]

F. Morillas and J. Valero, On the connectedness of the attainability set for lattice dynamical systems,, J. Diff. Equat. App., 18 (2012), 675.  doi: 10.1080/10236198.2011.574621.  Google Scholar

[40]

N. Rashevsky, "Mathematical Biophysics: Physico-Mathematical Foundations of Biology,", Third revised edition, (1960).   Google Scholar

[41]

A. C. Scott, Analysis of a myelinated nerve model,, Bull. Math. Biophys., 26 (1964), 247.   Google Scholar

[42]

W. Shen, Lifted lattices, hyperbolic structures, and topological disorders in coupled map lattices,, SIAM J. Appl. Math., 56 (1996), 1379.  doi: 10.1137/S0036139995282670.  Google Scholar

[43]

A. Sikorska-Nowak, Retarded functional differential equations in Banach spaces and Henstock-Kurzweil-Pettis integrals,, Discuss. Math. Differ. Incl. Control Optim., 27 (2007), 315.  doi: 10.7151/dmdico.1087.  Google Scholar

[44]

B. Wang, Dynamics of systems of infinite lattices,, J. Differential Equations, 221 (2006), 224.  doi: 10.1016/j.jde.2005.01.003.  Google Scholar

[45]

B. Wang, Asymptotic behavior of non-autonomous lattice systems,, J. Math. Anal. Appl., 331 (2007), 121.  doi: 10.1016/j.jmaa.2006.08.070.  Google Scholar

[46]

X. Wang, Sh. Li and D. Xu, Random attractors for second-order stochastic lattice dynamical systems,, Nonlinear Anal., 72 (2010), 483.  doi: 10.1016/j.na.2009.06.094.  Google Scholar

[47]

W. Yan, Y. Li and Sh. Ji, Random attractors for first order stochastic retarded lattice dynamical systems,, J. Math. Phys., 51 (2010).  doi: 10.1063/1.3319566.  Google Scholar

[48]

C. Zhao and S. Zhou, Attractors of retarded first order lattice systems,, Nonlinearity, 20 (2007), 1987.  doi: 10.1088/0951-7715/20/8/010.  Google Scholar

[49]

C. Zhao and Sh. Zhou, Sufficient conditions for the existence of global random attractors for stochastic lattice dynamical systems and applications,, J. Math. Anal. Appl., 354 (2009), 78.  doi: 10.1016/j.jmaa.2008.12.036.  Google Scholar

[50]

C. Zhao, S. Zhou and W. Wang, Compact kernel sections for lattice systems with delays,, Nonlinear Analysis TMA, 70 (2009), 1330.  doi: 10.1016/j.na.2008.02.015.  Google Scholar

[51]

S. Zhou, Attractors for first order dissipative lattice dynamical systems,, Physica D, 178 (2003), 51.  doi: 10.1016/S0167-2789(02)00807-2.  Google Scholar

[52]

S. Zhou, Attractors and approximations for lattice dynamical systems,, J. Differential Equations, 200 (2004), 342.  doi: 10.1016/j.jde.2004.02.005.  Google Scholar

[53]

S. Zhou and W. Shi, Attractors and dimension of dissipative lattice systems,, J. Differential Equations, 224 (2006), 172.  doi: 10.1016/j.jde.2005.06.024.  Google Scholar

[54]

B. Zinner, Existence of traveling wavefront solutions for the discrete Nagumo equation,, J. Differential Equations, 96 (1992), 1.  doi: 10.1016/0022-0396(92)90142-A.  Google Scholar

show all references

References:
[1]

V. S. Afraĭmovich and V. I. Nekorkin, Chaos of traveling waves in a discrete chain of diffusively coupled maps,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 4 (1994), 631.  doi: 10.1142/S0218127494000459.  Google Scholar

[2]

A. Y. Abdallah, Exponential attractors for first-order lattice dynamical systems,, J. Math. Anal. Appl., 339 (2008), 217.  doi: 10.1016/j.jmaa.2007.06.054.  Google Scholar

[3]

J. M. Amigó, Á. Giménez, F. Morillas and J. Valero, Attractors for a lattice dynamical system generated by non-Newtonian fluids modeling suspensions,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 2681.  doi: 10.1142/S0218127410027295.  Google Scholar

[4]

V. Barbu, "Nonlinear Semigroups and Differential Equations in Banach Spaces,", Editura Academiei Republicii Socialiste România, (1976).   Google Scholar

[5]

P. W. Bates and A. Chmaj, A discrete convolution model for phase transitions,, Arch. Ration. Mech. Anal., 150 (1999), 281.  doi: 10.1007/s002050050189.  Google Scholar

[6]

P. W. Bates, H. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems,, Stochastics & Dynamics, 6 (2006), 1.  doi: 10.1142/S0219493706001621.  Google Scholar

[7]

P. W. Bates, K. Lu and B. Wang, Attractors for lattice dynamical systems,, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), 143.  doi: 10.1142/S0218127401002031.  Google Scholar

[8]

J. Bell, Some threshhold results for models of myelinated nerves,, Mathematical Biosciences, 54 (1981), 181.  doi: 10.1016/0025-5564(81)90085-7.  Google Scholar

[9]

J. Bell and C. Cosner, Threshold behaviour and propagation for nonlinear differential-difference systems motivated by modeling myelinated axons,, Quarterly Appl. Math., 42 (1984), 1.   Google Scholar

[10]

W.-J. Beyn and S. Yu. Pilyugin, Attractors of reaction diffusion systems on infinite lattices,, J. Dynam. Differential Equations, 15 (2003), 485.  doi: 10.1023/B:JODY.0000009745.41889.30.  Google Scholar

[11]

T. Caraballo and K. Lu, Attractors for stochastic lattice dynamical systems with a multiplicative noise,, Front. Math. China, 3 (2008), 317.  doi: 10.1007/s11464-008-0028-7.  Google Scholar

[12]

T. Caraballo, F. Morillas and J. Valero, Random Attractors for stochastic lattice systems with non-Lipschitz nonlinearity,, J. Diff. Equat. App., 17 (2011), 161.  doi: 10.1080/10236198.2010.549010.  Google Scholar

[13]

T. Caraballo, F. Morillas and J. Valero, Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities,, J. Differential Equations, 253 (2012), 667.  doi: 10.1016/j.jde.2012.03.020.  Google Scholar

[14]

S.-N. Chow and J. Mallet-Paret, Pattern formation and spatial chaos in lattice dynamical systems. I,, IEEE Trans. Circuits Syst., 42 (1995), 746.  doi: 10.1109/81.473583.  Google Scholar

[15]

S.-N. Chow, J. Mallet-Paret and W. Shen, Traveling waves in lattice dynamical systems,, J. Differential Equations, 149 (1998), 248.  doi: 10.1006/jdeq.1998.3478.  Google Scholar

[16]

S.-N. Chow, J. Mallet-Paret and E. S. Van Vleck, Pattern formation and spatial chaos in spatially discrete evolution equations,, Random Computational Dynamics, 4 (1996), 109.   Google Scholar

[17]

S.-N. Chow and W. Shen, Dynamics in a discrete Nagumo equation: Spatial topological chaos,, SIAM J. Appl. Math., 55 (1995), 1764.  doi: 10.1137/S0036139994261757.  Google Scholar

[18]

L. O. Chua and T. Roska, The CNN paradigm,, IEEE Trans. Circuits Syst., 40 (1993), 147.   Google Scholar

[19]

L. O. Chua and L. Yang, Cellular neural networks: Theory,, IEEE Trans. Circuits Syst., 35 (1988), 1257.  doi: 10.1109/31.7600.  Google Scholar

[20]

L. O. Chua and L. Yang, Cellular neural neetworks: Applications,, IEEE Trans. Circuits Syst., 35 (1988), 1273.  doi: 10.1109/31.7601.  Google Scholar

[21]

A. Pérez-Muñuzuri, V. Pérez-Muñuzuri, V. Pérez-Villar and L. O. Chua, Spiral waves on a 2-D array of nonlinear circuits,, IEEE Trans. Circuits Syst., 40 (1993), 872.   Google Scholar

[22]

R. Dogaru and L. O. Chua, Edge of chaos and local activity domain of Fitz-Hugh-Nagumo equation,, Internat. J. Bifur. Chaos, 8 (1988), 211.  doi: 10.1142/S0218127498000152.  Google Scholar

[23]

T. Erneux and G. Nicolis, Propagating waves in discrete bistable reaction diffusion systems,, Physica D, 67 (1993), 237.  doi: 10.1016/0167-2789(93)90208-I.  Google Scholar

[24]

M. Gobbino and M. Sardella, On the connectedness of attractors for dynamical systems,, J. Differential Equations, 133 (1997), 1.  doi: 10.1006/jdeq.1996.3166.  Google Scholar

[25]

A. M. Gomaa, On existence of solutions and solution sets of differential equations and differential inclusions with delay in Banach spaces,, J. Egyptian Math. Soc., 20 (2012), 79.  doi: 10.1016/j.joems.2012.08.007.  Google Scholar

[26]

X. Han, Random attractors for stochastic sine-Gordon lattice systems with multiplicative white noise,, J. Math. Anal. Appl., 376 (2011), 481.  doi: 10.1016/j.jmaa.2010.11.032.  Google Scholar

[27]

X. Han, W. Shen and S. Zhou, Random attractors for stochastic lattice dynamical systems in weighted spaces,, J. Differential Equations, 250 (2011), 1235.  doi: 10.1016/j.jde.2010.10.018.  Google Scholar

[28]

R. Kapral, Discrete models for chemically reacting systems,, J. Math. Chem., 6 (1991), 113.  doi: 10.1007/BF01192578.  Google Scholar

[29]

S. Kato, On existence and uniqueness conditions for nonlinear ordinary differential equations in Banach spaces,, Funkcialaj Ekvacioj., 19 (1976), 239.   Google Scholar

[30]

J. P. Keener, Propagation and its failure in coupled systems of discrete excitable cells,, SIAM J. Appl. Math., 47 (1987), 556.  doi: 10.1137/0147038.  Google Scholar

[31]

J. P. Keener, The effects of discrete gap junction coupling on propagation in myocardium,, J. Theor. Biol., 148 (1991), 49.   Google Scholar

[32]

O. A. Ladyzhenskaya, "Attractors for Semigroups and Evolution Equations,", Cambridge University Press, (1991).  doi: 10.1017/CBO9780511569418.  Google Scholar

[33]

J. P. Laplante and T. Erneux, Propagating failure in arrays of coupled bistable chemical reactors,, J. Phys. Chem., 96 (1992), 4931.   Google Scholar

[34]

V. Lakshmikantham, A. R. Mitchell and R. W. Mitchell, On the existence of solutions of differential equations of retarde type in a Banach space,, Annales Polonici Mathematici, 35 (): 253.   Google Scholar

[35]

Y. Lv and J. Sun, Dynamical behavior for stochastic lattice systems,, Chaos, 27 (2006), 1080.  doi: 10.1016/j.chaos.2005.04.089.  Google Scholar

[36]

J. Mallet-Paret, The global structure of traveling waves in spatially discrete dynamical systems,, J. Dynam. Differential Equations, 11 (1999), 49.  doi: 10.1023/A:1021841618074.  Google Scholar

[37]

V. S. Melnik and J. Valero, On attractors of multi-valued semi-flows and differential inclusions,, Set-Valued Anal., 6 (1998), 83.  doi: 10.1023/A:1008608431399.  Google Scholar

[38]

F. Morillas and J. Valero, Peano's theorem and attractors for lattice dynamical systems,, Internat. J. Bifur. Chaos, 19 (2009), 557.  doi: 10.1142/S0218127409023196.  Google Scholar

[39]

F. Morillas and J. Valero, On the connectedness of the attainability set for lattice dynamical systems,, J. Diff. Equat. App., 18 (2012), 675.  doi: 10.1080/10236198.2011.574621.  Google Scholar

[40]

N. Rashevsky, "Mathematical Biophysics: Physico-Mathematical Foundations of Biology,", Third revised edition, (1960).   Google Scholar

[41]

A. C. Scott, Analysis of a myelinated nerve model,, Bull. Math. Biophys., 26 (1964), 247.   Google Scholar

[42]

W. Shen, Lifted lattices, hyperbolic structures, and topological disorders in coupled map lattices,, SIAM J. Appl. Math., 56 (1996), 1379.  doi: 10.1137/S0036139995282670.  Google Scholar

[43]

A. Sikorska-Nowak, Retarded functional differential equations in Banach spaces and Henstock-Kurzweil-Pettis integrals,, Discuss. Math. Differ. Incl. Control Optim., 27 (2007), 315.  doi: 10.7151/dmdico.1087.  Google Scholar

[44]

B. Wang, Dynamics of systems of infinite lattices,, J. Differential Equations, 221 (2006), 224.  doi: 10.1016/j.jde.2005.01.003.  Google Scholar

[45]

B. Wang, Asymptotic behavior of non-autonomous lattice systems,, J. Math. Anal. Appl., 331 (2007), 121.  doi: 10.1016/j.jmaa.2006.08.070.  Google Scholar

[46]

X. Wang, Sh. Li and D. Xu, Random attractors for second-order stochastic lattice dynamical systems,, Nonlinear Anal., 72 (2010), 483.  doi: 10.1016/j.na.2009.06.094.  Google Scholar

[47]

W. Yan, Y. Li and Sh. Ji, Random attractors for first order stochastic retarded lattice dynamical systems,, J. Math. Phys., 51 (2010).  doi: 10.1063/1.3319566.  Google Scholar

[48]

C. Zhao and S. Zhou, Attractors of retarded first order lattice systems,, Nonlinearity, 20 (2007), 1987.  doi: 10.1088/0951-7715/20/8/010.  Google Scholar

[49]

C. Zhao and Sh. Zhou, Sufficient conditions for the existence of global random attractors for stochastic lattice dynamical systems and applications,, J. Math. Anal. Appl., 354 (2009), 78.  doi: 10.1016/j.jmaa.2008.12.036.  Google Scholar

[50]

C. Zhao, S. Zhou and W. Wang, Compact kernel sections for lattice systems with delays,, Nonlinear Analysis TMA, 70 (2009), 1330.  doi: 10.1016/j.na.2008.02.015.  Google Scholar

[51]

S. Zhou, Attractors for first order dissipative lattice dynamical systems,, Physica D, 178 (2003), 51.  doi: 10.1016/S0167-2789(02)00807-2.  Google Scholar

[52]

S. Zhou, Attractors and approximations for lattice dynamical systems,, J. Differential Equations, 200 (2004), 342.  doi: 10.1016/j.jde.2004.02.005.  Google Scholar

[53]

S. Zhou and W. Shi, Attractors and dimension of dissipative lattice systems,, J. Differential Equations, 224 (2006), 172.  doi: 10.1016/j.jde.2005.06.024.  Google Scholar

[54]

B. Zinner, Existence of traveling wavefront solutions for the discrete Nagumo equation,, J. Differential Equations, 96 (1992), 1.  doi: 10.1016/0022-0396(92)90142-A.  Google Scholar

[1]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[2]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[3]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[4]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[5]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[6]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[7]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[8]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[9]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[10]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[11]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[12]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[13]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[14]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[15]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[16]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[17]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[18]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

[19]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[20]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (64)
  • HTML views (0)
  • Cited by (14)

[Back to Top]