• Previous Article
    Pathwise solutions of SPDEs driven by Hölder-continuous integrators with exponent larger than $1/2$ and random dynamical systems
  • DCDS Home
  • This Issue
  • Next Article
    On the convergence of statistical solutions of the 3D Navier-Stokes-$\alpha$ model as $\alpha$ vanishes
January  2014, 34(1): 51-77. doi: 10.3934/dcds.2014.34.51

On differential equations with delay in Banach spaces and attractors for retarded lattice dynamical systems

1. 

Dpto. Ecuaciones Diferenciales y Análisis Numérico, Facultad de Matemáticas, Universidad de Sevilla, Campus Reina Mercedes, Apdo. de Correos 1160, 41080 Sevilla

2. 

Department d'Economia Aplicada, Facultat d'Economia, Universitat de València, Campus del Tarongers s/n, 46022-València, Spain

3. 

Centro de Investigación Operativa, Universidad Miguel Hernández de Elche, Avda. de la Universidad, s/n, 03202 Elche

Received  November 2012 Revised  January 2013 Published  June 2013

In this paper we first prove a rather general theorem about existence of solutions for an abstract differential equation in a Banach space by assuming that the nonlinear term is in some sense weakly continuous.
    We then apply this result to a lattice dynamical system with delay, proving also the existence of a global compact attractor for such system.
Citation: Tomás Caraballo, Francisco Morillas, José Valero. On differential equations with delay in Banach spaces and attractors for retarded lattice dynamical systems. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 51-77. doi: 10.3934/dcds.2014.34.51
References:
[1]

V. S. Afraĭmovich and V. I. Nekorkin, Chaos of traveling waves in a discrete chain of diffusively coupled maps, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 4 (1994), 631-637. doi: 10.1142/S0218127494000459.

[2]

A. Y. Abdallah, Exponential attractors for first-order lattice dynamical systems, J. Math. Anal. Appl., 339 (2008), 217-224. doi: 10.1016/j.jmaa.2007.06.054.

[3]

J. M. Amigó, Á. Giménez, F. Morillas and J. Valero, Attractors for a lattice dynamical system generated by non-Newtonian fluids modeling suspensions, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 2681-2700. doi: 10.1142/S0218127410027295.

[4]

V. Barbu, "Nonlinear Semigroups and Differential Equations in Banach Spaces," Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leiden, 1976.

[5]

P. W. Bates and A. Chmaj, A discrete convolution model for phase transitions, Arch. Ration. Mech. Anal., 150 (1999), 281-305. doi: 10.1007/s002050050189.

[6]

P. W. Bates, H. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems, Stochastics & Dynamics, 6 (2006), 1-21. doi: 10.1142/S0219493706001621.

[7]

P. W. Bates, K. Lu and B. Wang, Attractors for lattice dynamical systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), 143-153. doi: 10.1142/S0218127401002031.

[8]

J. Bell, Some threshhold results for models of myelinated nerves, Mathematical Biosciences, 54 (1981), 181-190. doi: 10.1016/0025-5564(81)90085-7.

[9]

J. Bell and C. Cosner, Threshold behaviour and propagation for nonlinear differential-difference systems motivated by modeling myelinated axons, Quarterly Appl. Math., 42 (1984), 1-14.

[10]

W.-J. Beyn and S. Yu. Pilyugin, Attractors of reaction diffusion systems on infinite lattices, J. Dynam. Differential Equations, 15 (2003), 485-515. doi: 10.1023/B:JODY.0000009745.41889.30.

[11]

T. Caraballo and K. Lu, Attractors for stochastic lattice dynamical systems with a multiplicative noise, Front. Math. China, 3 (2008), 317-335. doi: 10.1007/s11464-008-0028-7.

[12]

T. Caraballo, F. Morillas and J. Valero, Random Attractors for stochastic lattice systems with non-Lipschitz nonlinearity, J. Diff. Equat. App., 17 (2011), 161-184. doi: 10.1080/10236198.2010.549010.

[13]

T. Caraballo, F. Morillas and J. Valero, Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities, J. Differential Equations, 253 (2012), 667-693. doi: 10.1016/j.jde.2012.03.020.

[14]

S.-N. Chow and J. Mallet-Paret, Pattern formation and spatial chaos in lattice dynamical systems. I, IEEE Trans. Circuits Syst., 42 (1995), 746-751. doi: 10.1109/81.473583.

[15]

S.-N. Chow, J. Mallet-Paret and W. Shen, Traveling waves in lattice dynamical systems, J. Differential Equations, 149 (1998), 248-291. doi: 10.1006/jdeq.1998.3478.

[16]

S.-N. Chow, J. Mallet-Paret and E. S. Van Vleck, Pattern formation and spatial chaos in spatially discrete evolution equations, Random Computational Dynamics, 4 (1996) 109-178.

[17]

S.-N. Chow and W. Shen, Dynamics in a discrete Nagumo equation: Spatial topological chaos, SIAM J. Appl. Math., 55 (1995), 1764-1781. doi: 10.1137/S0036139994261757.

[18]

L. O. Chua and T. Roska, The CNN paradigm, IEEE Trans. Circuits Syst., 40 (1993), 147-156.

[19]

L. O. Chua and L. Yang, Cellular neural networks: Theory, IEEE Trans. Circuits Syst., 35 (1988), 1257-1272. doi: 10.1109/31.7600.

[20]

L. O. Chua and L. Yang, Cellular neural neetworks: Applications, IEEE Trans. Circuits Syst., 35 (1988), 1273-1290. doi: 10.1109/31.7601.

[21]

A. Pérez-Muñuzuri, V. Pérez-Muñuzuri, V. Pérez-Villar and L. O. Chua, Spiral waves on a 2-D array of nonlinear circuits, IEEE Trans. Circuits Syst., 40 (1993), 872-877.

[22]

R. Dogaru and L. O. Chua, Edge of chaos and local activity domain of Fitz-Hugh-Nagumo equation, Internat. J. Bifur. Chaos, 8 (1988), 211-257. doi: 10.1142/S0218127498000152.

[23]

T. Erneux and G. Nicolis, Propagating waves in discrete bistable reaction diffusion systems, Physica D, 67 (1993), 237-244. doi: 10.1016/0167-2789(93)90208-I.

[24]

M. Gobbino and M. Sardella, On the connectedness of attractors for dynamical systems, J. Differential Equations, 133 (1997), 1-14. doi: 10.1006/jdeq.1996.3166.

[25]

A. M. Gomaa, On existence of solutions and solution sets of differential equations and differential inclusions with delay in Banach spaces, J. Egyptian Math. Soc., 20 (2012), 79-86. doi: 10.1016/j.joems.2012.08.007.

[26]

X. Han, Random attractors for stochastic sine-Gordon lattice systems with multiplicative white noise, J. Math. Anal. Appl., 376 (2011), 481-493. doi: 10.1016/j.jmaa.2010.11.032.

[27]

X. Han, W. Shen and S. Zhou, Random attractors for stochastic lattice dynamical systems in weighted spaces, J. Differential Equations, 250 (2011), 1235-1266. doi: 10.1016/j.jde.2010.10.018.

[28]

R. Kapral, Discrete models for chemically reacting systems, J. Math. Chem., 6 (1991), 113-163. doi: 10.1007/BF01192578.

[29]

S. Kato, On existence and uniqueness conditions for nonlinear ordinary differential equations in Banach spaces, Funkcialaj Ekvacioj., 19 (1976), 239-245.

[30]

J. P. Keener, Propagation and its failure in coupled systems of discrete excitable cells, SIAM J. Appl. Math., 47 (1987), 556-572. doi: 10.1137/0147038.

[31]

J. P. Keener, The effects of discrete gap junction coupling on propagation in myocardium, J. Theor. Biol., 148 (1991), 49-82.

[32]

O. A. Ladyzhenskaya, "Attractors for Semigroups and Evolution Equations," Cambridge University Press, Cambridge, 1991. doi: 10.1017/CBO9780511569418.

[33]

J. P. Laplante and T. Erneux, Propagating failure in arrays of coupled bistable chemical reactors, J. Phys. Chem., 96 (1992), 4931-4934.

[34]

V. Lakshmikantham, A. R. Mitchell and R. W. Mitchell, On the existence of solutions of differential equations of retarde type in a Banach space, Annales Polonici Mathematici, 35 (1977/78), 253-260.

[35]

Y. Lv and J. Sun, Dynamical behavior for stochastic lattice systems, Chaos, Solitons and Fractals, 27 (2006), 1080-1090. doi: 10.1016/j.chaos.2005.04.089.

[36]

J. Mallet-Paret, The global structure of traveling waves in spatially discrete dynamical systems, J. Dynam. Differential Equations, 11 (1999), 49-127. doi: 10.1023/A:1021841618074.

[37]

V. S. Melnik and J. Valero, On attractors of multi-valued semi-flows and differential inclusions, Set-Valued Anal., 6 (1998), 83-111. doi: 10.1023/A:1008608431399.

[38]

F. Morillas and J. Valero, Peano's theorem and attractors for lattice dynamical systems, Internat. J. Bifur. Chaos, 19 (2009), 557-578. doi: 10.1142/S0218127409023196.

[39]

F. Morillas and J. Valero, On the connectedness of the attainability set for lattice dynamical systems, J. Diff. Equat. App., 18 (2012), 675-692. doi: 10.1080/10236198.2011.574621.

[40]

N. Rashevsky, "Mathematical Biophysics: Physico-Mathematical Foundations of Biology," Third revised edition, Dover Publications, Inc., Vol. 1, New York, 1960.

[41]

A. C. Scott, Analysis of a myelinated nerve model, Bull. Math. Biophys., 26 (1964), 247-254.

[42]

W. Shen, Lifted lattices, hyperbolic structures, and topological disorders in coupled map lattices, SIAM J. Appl. Math., 56 (1996), 1379-1399. doi: 10.1137/S0036139995282670.

[43]

A. Sikorska-Nowak, Retarded functional differential equations in Banach spaces and Henstock-Kurzweil-Pettis integrals, Discuss. Math. Differ. Incl. Control Optim., 27 (2007), 315-327. doi: 10.7151/dmdico.1087.

[44]

B. Wang, Dynamics of systems of infinite lattices, J. Differential Equations, 221 (2006), 224-245. doi: 10.1016/j.jde.2005.01.003.

[45]

B. Wang, Asymptotic behavior of non-autonomous lattice systems, J. Math. Anal. Appl., 331 (2007), 121-136. doi: 10.1016/j.jmaa.2006.08.070.

[46]

X. Wang, Sh. Li and D. Xu, Random attractors for second-order stochastic lattice dynamical systems, Nonlinear Anal., 72 (2010), 483-494. doi: 10.1016/j.na.2009.06.094.

[47]

W. Yan, Y. Li and Sh. Ji, Random attractors for first order stochastic retarded lattice dynamical systems, J. Math. Phys., 51 (2010), 17 pp. doi: 10.1063/1.3319566.

[48]

C. Zhao and S. Zhou, Attractors of retarded first order lattice systems, Nonlinearity, 20 (2007), 1987-2006. doi: 10.1088/0951-7715/20/8/010.

[49]

C. Zhao and Sh. Zhou, Sufficient conditions for the existence of global random attractors for stochastic lattice dynamical systems and applications, J. Math. Anal. Appl., 354 (2009), 78-95. doi: 10.1016/j.jmaa.2008.12.036.

[50]

C. Zhao, S. Zhou and W. Wang, Compact kernel sections for lattice systems with delays, Nonlinear Analysis TMA, 70 (2009), 1330-1348. doi: 10.1016/j.na.2008.02.015.

[51]

S. Zhou, Attractors for first order dissipative lattice dynamical systems, Physica D, 178 (2003), 51-61. doi: 10.1016/S0167-2789(02)00807-2.

[52]

S. Zhou, Attractors and approximations for lattice dynamical systems, J. Differential Equations, 200 (2004), 342-368. doi: 10.1016/j.jde.2004.02.005.

[53]

S. Zhou and W. Shi, Attractors and dimension of dissipative lattice systems, J. Differential Equations, 224 (2006), 172-204. doi: 10.1016/j.jde.2005.06.024.

[54]

B. Zinner, Existence of traveling wavefront solutions for the discrete Nagumo equation, J. Differential Equations, 96 (1992), 1-27. doi: 10.1016/0022-0396(92)90142-A.

show all references

References:
[1]

V. S. Afraĭmovich and V. I. Nekorkin, Chaos of traveling waves in a discrete chain of diffusively coupled maps, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 4 (1994), 631-637. doi: 10.1142/S0218127494000459.

[2]

A. Y. Abdallah, Exponential attractors for first-order lattice dynamical systems, J. Math. Anal. Appl., 339 (2008), 217-224. doi: 10.1016/j.jmaa.2007.06.054.

[3]

J. M. Amigó, Á. Giménez, F. Morillas and J. Valero, Attractors for a lattice dynamical system generated by non-Newtonian fluids modeling suspensions, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 20 (2010), 2681-2700. doi: 10.1142/S0218127410027295.

[4]

V. Barbu, "Nonlinear Semigroups and Differential Equations in Banach Spaces," Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leiden, 1976.

[5]

P. W. Bates and A. Chmaj, A discrete convolution model for phase transitions, Arch. Ration. Mech. Anal., 150 (1999), 281-305. doi: 10.1007/s002050050189.

[6]

P. W. Bates, H. Lisei and K. Lu, Attractors for stochastic lattice dynamical systems, Stochastics & Dynamics, 6 (2006), 1-21. doi: 10.1142/S0219493706001621.

[7]

P. W. Bates, K. Lu and B. Wang, Attractors for lattice dynamical systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), 143-153. doi: 10.1142/S0218127401002031.

[8]

J. Bell, Some threshhold results for models of myelinated nerves, Mathematical Biosciences, 54 (1981), 181-190. doi: 10.1016/0025-5564(81)90085-7.

[9]

J. Bell and C. Cosner, Threshold behaviour and propagation for nonlinear differential-difference systems motivated by modeling myelinated axons, Quarterly Appl. Math., 42 (1984), 1-14.

[10]

W.-J. Beyn and S. Yu. Pilyugin, Attractors of reaction diffusion systems on infinite lattices, J. Dynam. Differential Equations, 15 (2003), 485-515. doi: 10.1023/B:JODY.0000009745.41889.30.

[11]

T. Caraballo and K. Lu, Attractors for stochastic lattice dynamical systems with a multiplicative noise, Front. Math. China, 3 (2008), 317-335. doi: 10.1007/s11464-008-0028-7.

[12]

T. Caraballo, F. Morillas and J. Valero, Random Attractors for stochastic lattice systems with non-Lipschitz nonlinearity, J. Diff. Equat. App., 17 (2011), 161-184. doi: 10.1080/10236198.2010.549010.

[13]

T. Caraballo, F. Morillas and J. Valero, Attractors of stochastic lattice dynamical systems with a multiplicative noise and non-Lipschitz nonlinearities, J. Differential Equations, 253 (2012), 667-693. doi: 10.1016/j.jde.2012.03.020.

[14]

S.-N. Chow and J. Mallet-Paret, Pattern formation and spatial chaos in lattice dynamical systems. I, IEEE Trans. Circuits Syst., 42 (1995), 746-751. doi: 10.1109/81.473583.

[15]

S.-N. Chow, J. Mallet-Paret and W. Shen, Traveling waves in lattice dynamical systems, J. Differential Equations, 149 (1998), 248-291. doi: 10.1006/jdeq.1998.3478.

[16]

S.-N. Chow, J. Mallet-Paret and E. S. Van Vleck, Pattern formation and spatial chaos in spatially discrete evolution equations, Random Computational Dynamics, 4 (1996) 109-178.

[17]

S.-N. Chow and W. Shen, Dynamics in a discrete Nagumo equation: Spatial topological chaos, SIAM J. Appl. Math., 55 (1995), 1764-1781. doi: 10.1137/S0036139994261757.

[18]

L. O. Chua and T. Roska, The CNN paradigm, IEEE Trans. Circuits Syst., 40 (1993), 147-156.

[19]

L. O. Chua and L. Yang, Cellular neural networks: Theory, IEEE Trans. Circuits Syst., 35 (1988), 1257-1272. doi: 10.1109/31.7600.

[20]

L. O. Chua and L. Yang, Cellular neural neetworks: Applications, IEEE Trans. Circuits Syst., 35 (1988), 1273-1290. doi: 10.1109/31.7601.

[21]

A. Pérez-Muñuzuri, V. Pérez-Muñuzuri, V. Pérez-Villar and L. O. Chua, Spiral waves on a 2-D array of nonlinear circuits, IEEE Trans. Circuits Syst., 40 (1993), 872-877.

[22]

R. Dogaru and L. O. Chua, Edge of chaos and local activity domain of Fitz-Hugh-Nagumo equation, Internat. J. Bifur. Chaos, 8 (1988), 211-257. doi: 10.1142/S0218127498000152.

[23]

T. Erneux and G. Nicolis, Propagating waves in discrete bistable reaction diffusion systems, Physica D, 67 (1993), 237-244. doi: 10.1016/0167-2789(93)90208-I.

[24]

M. Gobbino and M. Sardella, On the connectedness of attractors for dynamical systems, J. Differential Equations, 133 (1997), 1-14. doi: 10.1006/jdeq.1996.3166.

[25]

A. M. Gomaa, On existence of solutions and solution sets of differential equations and differential inclusions with delay in Banach spaces, J. Egyptian Math. Soc., 20 (2012), 79-86. doi: 10.1016/j.joems.2012.08.007.

[26]

X. Han, Random attractors for stochastic sine-Gordon lattice systems with multiplicative white noise, J. Math. Anal. Appl., 376 (2011), 481-493. doi: 10.1016/j.jmaa.2010.11.032.

[27]

X. Han, W. Shen and S. Zhou, Random attractors for stochastic lattice dynamical systems in weighted spaces, J. Differential Equations, 250 (2011), 1235-1266. doi: 10.1016/j.jde.2010.10.018.

[28]

R. Kapral, Discrete models for chemically reacting systems, J. Math. Chem., 6 (1991), 113-163. doi: 10.1007/BF01192578.

[29]

S. Kato, On existence and uniqueness conditions for nonlinear ordinary differential equations in Banach spaces, Funkcialaj Ekvacioj., 19 (1976), 239-245.

[30]

J. P. Keener, Propagation and its failure in coupled systems of discrete excitable cells, SIAM J. Appl. Math., 47 (1987), 556-572. doi: 10.1137/0147038.

[31]

J. P. Keener, The effects of discrete gap junction coupling on propagation in myocardium, J. Theor. Biol., 148 (1991), 49-82.

[32]

O. A. Ladyzhenskaya, "Attractors for Semigroups and Evolution Equations," Cambridge University Press, Cambridge, 1991. doi: 10.1017/CBO9780511569418.

[33]

J. P. Laplante and T. Erneux, Propagating failure in arrays of coupled bistable chemical reactors, J. Phys. Chem., 96 (1992), 4931-4934.

[34]

V. Lakshmikantham, A. R. Mitchell and R. W. Mitchell, On the existence of solutions of differential equations of retarde type in a Banach space, Annales Polonici Mathematici, 35 (1977/78), 253-260.

[35]

Y. Lv and J. Sun, Dynamical behavior for stochastic lattice systems, Chaos, Solitons and Fractals, 27 (2006), 1080-1090. doi: 10.1016/j.chaos.2005.04.089.

[36]

J. Mallet-Paret, The global structure of traveling waves in spatially discrete dynamical systems, J. Dynam. Differential Equations, 11 (1999), 49-127. doi: 10.1023/A:1021841618074.

[37]

V. S. Melnik and J. Valero, On attractors of multi-valued semi-flows and differential inclusions, Set-Valued Anal., 6 (1998), 83-111. doi: 10.1023/A:1008608431399.

[38]

F. Morillas and J. Valero, Peano's theorem and attractors for lattice dynamical systems, Internat. J. Bifur. Chaos, 19 (2009), 557-578. doi: 10.1142/S0218127409023196.

[39]

F. Morillas and J. Valero, On the connectedness of the attainability set for lattice dynamical systems, J. Diff. Equat. App., 18 (2012), 675-692. doi: 10.1080/10236198.2011.574621.

[40]

N. Rashevsky, "Mathematical Biophysics: Physico-Mathematical Foundations of Biology," Third revised edition, Dover Publications, Inc., Vol. 1, New York, 1960.

[41]

A. C. Scott, Analysis of a myelinated nerve model, Bull. Math. Biophys., 26 (1964), 247-254.

[42]

W. Shen, Lifted lattices, hyperbolic structures, and topological disorders in coupled map lattices, SIAM J. Appl. Math., 56 (1996), 1379-1399. doi: 10.1137/S0036139995282670.

[43]

A. Sikorska-Nowak, Retarded functional differential equations in Banach spaces and Henstock-Kurzweil-Pettis integrals, Discuss. Math. Differ. Incl. Control Optim., 27 (2007), 315-327. doi: 10.7151/dmdico.1087.

[44]

B. Wang, Dynamics of systems of infinite lattices, J. Differential Equations, 221 (2006), 224-245. doi: 10.1016/j.jde.2005.01.003.

[45]

B. Wang, Asymptotic behavior of non-autonomous lattice systems, J. Math. Anal. Appl., 331 (2007), 121-136. doi: 10.1016/j.jmaa.2006.08.070.

[46]

X. Wang, Sh. Li and D. Xu, Random attractors for second-order stochastic lattice dynamical systems, Nonlinear Anal., 72 (2010), 483-494. doi: 10.1016/j.na.2009.06.094.

[47]

W. Yan, Y. Li and Sh. Ji, Random attractors for first order stochastic retarded lattice dynamical systems, J. Math. Phys., 51 (2010), 17 pp. doi: 10.1063/1.3319566.

[48]

C. Zhao and S. Zhou, Attractors of retarded first order lattice systems, Nonlinearity, 20 (2007), 1987-2006. doi: 10.1088/0951-7715/20/8/010.

[49]

C. Zhao and Sh. Zhou, Sufficient conditions for the existence of global random attractors for stochastic lattice dynamical systems and applications, J. Math. Anal. Appl., 354 (2009), 78-95. doi: 10.1016/j.jmaa.2008.12.036.

[50]

C. Zhao, S. Zhou and W. Wang, Compact kernel sections for lattice systems with delays, Nonlinear Analysis TMA, 70 (2009), 1330-1348. doi: 10.1016/j.na.2008.02.015.

[51]

S. Zhou, Attractors for first order dissipative lattice dynamical systems, Physica D, 178 (2003), 51-61. doi: 10.1016/S0167-2789(02)00807-2.

[52]

S. Zhou, Attractors and approximations for lattice dynamical systems, J. Differential Equations, 200 (2004), 342-368. doi: 10.1016/j.jde.2004.02.005.

[53]

S. Zhou and W. Shi, Attractors and dimension of dissipative lattice systems, J. Differential Equations, 224 (2006), 172-204. doi: 10.1016/j.jde.2005.06.024.

[54]

B. Zinner, Existence of traveling wavefront solutions for the discrete Nagumo equation, J. Differential Equations, 96 (1992), 1-27. doi: 10.1016/0022-0396(92)90142-A.

[1]

Tomás Caraballo, David Cheban. On the structure of the global attractor for non-autonomous dynamical systems with weak convergence. Communications on Pure and Applied Analysis, 2012, 11 (2) : 809-828. doi: 10.3934/cpaa.2012.11.809

[2]

Janusz Mierczyński, Sylvia Novo, Rafael Obaya. Lyapunov exponents and Oseledets decomposition in random dynamical systems generated by systems of delay differential equations. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2235-2255. doi: 10.3934/cpaa.2020098

[3]

Yejuan Wang, Lin Yang. Global exponential attraction for multi-valued semidynamical systems with application to delay differential equations without uniqueness. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1961-1987. doi: 10.3934/dcdsb.2018257

[4]

Ahmed Y. Abdallah. Exponential attractors for second order lattice dynamical systems. Communications on Pure and Applied Analysis, 2009, 8 (3) : 803-813. doi: 10.3934/cpaa.2009.8.803

[5]

Xiaoying Han. Exponential attractors for lattice dynamical systems in weighted spaces. Discrete and Continuous Dynamical Systems, 2011, 31 (2) : 445-467. doi: 10.3934/dcds.2011.31.445

[6]

Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete and Continuous Dynamical Systems, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215

[7]

Robert Baier, Thuy T. T. Le. Construction of the minimum time function for linear systems via higher-order set-valued methods. Mathematical Control and Related Fields, 2019, 9 (2) : 223-255. doi: 10.3934/mcrf.2019012

[8]

Tomás Caraballo, David Cheban. On the structure of the global attractor for infinite-dimensional non-autonomous dynamical systems with weak convergence. Communications on Pure and Applied Analysis, 2013, 12 (1) : 281-302. doi: 10.3934/cpaa.2013.12.281

[9]

Bin Wang, Arieh Iserles. Dirichlet series for dynamical systems of first-order ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 281-298. doi: 10.3934/dcdsb.2014.19.281

[10]

Robert Hesse, Alexandra Neamţu. Global solutions and random dynamical systems for rough evolution equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (7) : 2723-2748. doi: 10.3934/dcdsb.2020029

[11]

Xinyuan Liao, Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative non-autonomous lattice dynamical systems. Communications on Pure and Applied Analysis, 2007, 6 (4) : 1087-1111. doi: 10.3934/cpaa.2007.6.1087

[12]

Caidi Zhao, Shengfan Zhou. Compact uniform attractors for dissipative lattice dynamical systems with delays. Discrete and Continuous Dynamical Systems, 2008, 21 (2) : 643-663. doi: 10.3934/dcds.2008.21.643

[13]

Anhui Gu. Asymptotic behavior of random lattice dynamical systems and their Wong-Zakai approximations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5737-5767. doi: 10.3934/dcdsb.2019104

[14]

Ahmed Y. Abdallah. Asymptotic behavior of the Klein-Gordon-Schrödinger lattice dynamical systems. Communications on Pure and Applied Analysis, 2006, 5 (1) : 55-69. doi: 10.3934/cpaa.2006.5.55

[15]

Xin Li, Wenxian Shen, Chunyou Sun. Invariant measures for complex-valued dissipative dynamical systems and applications. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2427-2446. doi: 10.3934/dcdsb.2017124

[16]

B. Coll, A. Gasull, R. Prohens. On a criterium of global attraction for discrete dynamical systems. Communications on Pure and Applied Analysis, 2006, 5 (3) : 537-550. doi: 10.3934/cpaa.2006.5.537

[17]

David Cheban. Global attractors of nonautonomous quasihomogeneous dynamical systems. Conference Publications, 2001, 2001 (Special) : 96-101. doi: 10.3934/proc.2001.2001.96

[18]

Stefano Galatolo. Global and local complexity in weakly chaotic dynamical systems. Discrete and Continuous Dynamical Systems, 2003, 9 (6) : 1607-1624. doi: 10.3934/dcds.2003.9.1607

[19]

Ismael Maroto, Carmen NÚÑez, Rafael Obaya. Dynamical properties of nonautonomous functional differential equations with state-dependent delay. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3939-3961. doi: 10.3934/dcds.2017167

[20]

Neville J. Ford, Stewart J. Norton. Predicting changes in dynamical behaviour in solutions to stochastic delay differential equations. Communications on Pure and Applied Analysis, 2006, 5 (2) : 367-382. doi: 10.3934/cpaa.2006.5.367

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (141)
  • HTML views (0)
  • Cited by (13)

[Back to Top]