December  2014, 34(12): 5135-5164. doi: 10.3934/dcds.2014.34.5135

Measuring the total amount of chaos in some Hamiltonian systems

1. 

Departament de Matemàtica Aplicada i Anàlisi, Universitat de Barcelona, Gran Via 585, 08007 Barcelona

Received  February 2014 Revised  April 2014 Published  June 2014

We consider some simple Hamiltonian systems, variants or generalizations of the Hénon-Heiles system, in two and three degrees of freedom, around a positive definite elliptic point, in resonant and non-resonant cases. After reviewing some theoretical background, we determine a measure of the domain of chaoticity by looking at the frequency of positive Lyapunov exponents in a sample of initial conditions. The question we study is how this measure depends on the energy and parameters and which are the dynamical objects responsible for the observed behaviour.
Citation: Carles Simó. Measuring the total amount of chaos in some Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2014, 34 (12) : 5135-5164. doi: 10.3934/dcds.2014.34.5135
References:
[1]

V. I. Arnold and A. Avez, Problèmes Ergodiques de la Mécanique Classique, Gauthier-Villars, Paris, 1967.  Google Scholar

[2]

H. Broer, R. Roussarie and C. Simó, Invariant circles in the Bogdanov-Takens bifurcation for diffeomorphism, Ergod. Th. & Dynam. Systems, 16 (1996), 1147-1172. doi: 10.1017/S0143385700009950.  Google Scholar

[3]

H. Broer and C. Simó, Hill's equation with quasi-periodic forcing: Resonance tongues, instability pockets and global phenomena, Bul. Soc. Bras. Mat., 29 (1998), 253-293. doi: 10.1007/BF01237651.  Google Scholar

[4]

P. M. Cincotta, C. M. Giordano and C. Simó, Phase space structure of multidimensional systems by means of the Mean Exponential Growth factor of Nearby Orbits (MEGNO), Physica D, 182 (2003), 151-178. doi: 10.1016/S0167-2789(03)00103-9.  Google Scholar

[5]

A. Delshams, V. Gelfreich, À. Jorba and T. Martínez-Seara, Exponentially small splitting of separatrices under fast quasiperiodic forcing, Comm. Math. Phys., 189 (1997), 35-71. doi: 10.1007/s002200050190.  Google Scholar

[6]

A. Delshams, M. Gonchenko and P. Gutiérrez, Exponentially small lower bounds for the splitting of separatrices to whiskered tori with frequencies of constant type,, Preprint, (): 14.   Google Scholar

[7]

E. Fontich and C. Simó, Invariant manifolds for near identity differentiable maps and splitting of separatrices, Ergod. Th. & Dynam. Systems, 10 (1990), 319-346. doi: 10.1017/S0143385700005575.  Google Scholar

[8]

E. Fontich and C. Simó, The splitting of separatrices for analytic diffeomorphisms, Ergod. Th. & Dynam. Systems, 10 (1990), 295-318. doi: 10.1017/S0143385700005563.  Google Scholar

[9]

C. Froeschlé, Numerical study of a four-dimensional mapping, Astronom. and Astrophys., 16 (1972), 172-189.  Google Scholar

[10]

V. Gelfreich and C. Simó, High-precision computations of divergent asymptotic series and homoclinic phenomena, Discrete and Continuous Dynamical Systems B, 10 (2008), 511-536. doi: 10.3934/dcdsb.2008.10.511.  Google Scholar

[11]

V. Gelfreich, C. Simó and A. Vieiro, Dynamics of $4D$ symplectic maps near a double resonance, Physica D, 243 (2013), 92-110. doi: 10.1016/j.physd.2012.10.001.  Google Scholar

[12]

A. Giorgilli, A. Delshams, E. Fontich, L. Galgani and C. Simó, Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem, Journal of Differential Equations, 77 (1989), 167-198. doi: 10.1016/0022-0396(89)90161-7.  Google Scholar

[13]

G. Gómez, J. M. Mondelo and C. Simó, A collocation method for the numerical fourier analysis of quasi-periodic functions. I: Numerical tests and examples, Discrete and Continuous Dynamical Systems B, 14 (2010), 41-74. doi: 10.3934/dcdsb.2010.14.41.  Google Scholar

[14]

G. Gómez, J. M. Mondelo and C. Simó, A Collocation Method for the Numerical Fourier Analysis of Quasi-periodic Functions. II: Analytical error estimates, Discrete and Continuous Dynamical Systems B, 14 (2010), 75-109. doi: 10.3934/dcdsb.2010.14.75.  Google Scholar

[15]

M. Hénon and C. Heiles, The applicability of the third integral of motion: Some numerical experiments, Astronom. J., 69 (1964), 73-79. doi: 10.1086/109234.  Google Scholar

[16]

H. Ito, Non-integrability of the Hénon-Heiles system and a theorem of Ziglin, Koday Math. J., 8 (1985), 120-138. doi: 10.2996/kmj/1138037004.  Google Scholar

[17]

J. Laskar, The chaotic motion of the solar system. A numerical estimate of the size of the chaotic zones, Icarus, 88 (1990), 266-291. doi: 10.1016/0019-1035(90)90084-M.  Google Scholar

[18]

F. Ledrappier, M. Shub, C. Simó and A. Wilkinson, Random versus deterministic exponents in a rich family of diffeomorphisms, J. Statist. Phys., 113 (2003), 85-149. doi: 10.1023/A:1025770720803.  Google Scholar

[19]

A. Luque and J. Villanueva, Quasi-Periodic Frequency Analysis Using Averaging-Extrapolation Methods, SIAM J. Appl. Dyn. Syst., 13 (2014), 1-46. doi: 10.1137/130920113.  Google Scholar

[20]

R. Martínez and C. Simó, Non-integrability of Hamiltonian systems through high order variational equations: Summary of results and examples, Regular and Chaotic Dynamics, 14 (2009), 323-348. doi: 10.1134/S1560354709030010.  Google Scholar

[21]

R. Martínez and C. Simó, Non-integrability of the degenerate cases of the Swinging Atwood's Machine using higher order variational equations, Discrete and Continuous Dynamical Systems A, 29 (2011), 1-24. doi: 10.3934/dcds.2011.29.1.  Google Scholar

[22]

N. Miguel, C. Simó and A. Vieiro, From the Hénon conservative map to the Chirikov standard map for large parameter values, Regular and Chaotic Dynamics, 18 (2013), 469-489. doi: 10.1134/S1560354713050018.  Google Scholar

[23]

J. J. Morales-Ruiz, Differential Galois Theory and Non-Integrability of Hamiltonian Systems, Progress in Mathematics, 179, Birkhäuser, 1999. doi: 10.1007/978-3-0348-8718-2.  Google Scholar

[24]

J. J. Morales-Ruiz and J. P. Ramis, Galoisian obstructions to integrability of Hamiltonian systems I, Methods and Applications of Analysis, 8 (2001), 33-95.  Google Scholar

[25]

J. J. Morales-Ruiz and J. P. Ramis, Galoisian obstructions to integrability of Hamiltonian systems II, Methods and Applications of Analysis, 8 (2001), 97-112. Google Scholar

[26]

J. J. Morales, J. P. Ramis and C. Simó, Integrability of hamiltonian systems and differential galois groups of higher variational equations, Annales Sci. de l'ENS 4$^e$ série, 40 (2007), 845-884. doi: 10.1016/j.ansens.2007.09.002.  Google Scholar

[27]

J. J. Morales and C. Simó, Non integrability criteria for Hamiltonians in the case of Lamé normal variational equations, J. Diff. Equations, 129 (1996), 111-135. doi: 10.1006/jdeq.1996.0113.  Google Scholar

[28]

A. Morbidelli and A. Giorgilli, Superexponential stability of KAM tori, J. Statist. Phys, 78 (1995), 1607-1617. doi: 10.1007/BF02180145.  Google Scholar

[29]

J. Moser, Stable and Random Motions in Dynamical Systems: With Special Emphasis on Celestial Mechanics, Princeton University Press, 1973.  Google Scholar

[30]

A. I. Neishtadt, The separation of motions in systems with rapidly rotating phase, Prikladnaja Matematika i Mekhanika, 48 (1984), 133-139. doi: 10.1016/0021-8928(84)90078-9.  Google Scholar

[31]

N. N. Nekhorosev, An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems, Russian Mathematical Surveys, 32 (6) (1977), 5-66.  Google Scholar

[32]

J. B. Pesin, Characteristic exponents and smooth ergodic theory, Russian Math. Surveys, 32 (4) (1977), 55-112.  Google Scholar

[33]

J. Sánchez, M. Net and C. Simó, Computation of invariant tori by Newton-Krylov methods in large-scale dissipative systems, Physica D, 239 (2010), 123-133. doi: 10.1016/j.physd.2009.10.012.  Google Scholar

[34]

C. Siegel and J. Moser, Lectures on Celestial Mechanics, Springer, 1971.  Google Scholar

[35]

C. Simó, On the analytical and numerical approximation of invariant manifolds, Modern methods in celestial mechanics, D. Benest and C. Froeschlé, editors, 285-330, Editions Frontières, Paris, (1990). (Also available at http://www.maia.ub.es/dsg/2004/). Google Scholar

[36]

C. Simó, Averaging under fast quasiperiodic forcing, Integrable and chaotic behaviour in Hamiltonian Systems, I. Seimenis, editor,, Plenum Pub. Co., New York, 331 (1994), 13-34.  Google Scholar

[37]

C. Simó, Invariant Curves of Perturbations of Non Twist Integrable Area Preserving Maps, Regular and Chaotic Dynamics, 3 (1998), 180-195. doi: 10.1070/rd1998v003n03ABEH000088.  Google Scholar

[38]

C. Simó, Global Dynamics and Fast Indicators, Global Analysis of Dynamical Systems, H. W. Broer, B. Krauskopf and G. Vegter, editors, 373-389, IOP Publishing, Bristol, (2001).  Google Scholar

[39]

C. Simó and T. Stuchi, Central Stable/Unstable Manifolds and the destruction of KAM tori in the planar Hill problem, Physica D, 140 (2000), 1-32. doi: 10.1016/S0167-2789(99)00211-0.  Google Scholar

[40]

C. Simó, P. Sousa-Silva and M. Terra, Practical Stability Domains near $L_{4,5}$ in the Restricted Three-Body Problem: Some preliminary facts, Progress and Challenges in Dynamical Systems, Springer Proceedings in Mathematics & Statistics Series, 54, S. Ibáñez et al., editors, 367-382, Springer, (2013). Google Scholar

[41]

C. Simó, P. Sousa-Silva and M. Terra, Evidences of Diffusion Related to the Centre Manifold of $L_3$ in the 3D RTBP,, Work in progress., ().   Google Scholar

[42]

C. Simó and D. Treschev, Stability islands in the vicinity of separatrices of near-integrable symplectic maps, Discrete and Continuous Dynamical Systems B, 10 (2008), 681-698. doi: 10.3934/dcdsb.2008.10.681.  Google Scholar

[43]

C. Simó and A. Vieiro, Resonant zones, inner and outer splittings in generic and low order resonances of Area Preserving Maps, Nonlinearity, 22 (2009), 1191-1245. doi: 10.1088/0951-7715/22/5/012.  Google Scholar

[44]

C. Simó and A. Vieiro, Dynamics in chaotic zones of area preserving maps: close to separatrix and global instability zones, Physica D, 240 (2011), 732-753. doi: 10.1016/j.physd.2010.12.005.  Google Scholar

[45]

D. Treschev, Multidimensional symplectic separatrix maps, J. Nonlinear Sci., 12 (2002), 27-58. doi: 10.1007/s00332-001-0460-2.  Google Scholar

[46]

S. L. Ziglin, Branching of solutions and non-existence of first integrals in Hamiltonian mechanics I, Funct. Anal. Appl., 16 (1982), 181-189. Google Scholar

show all references

References:
[1]

V. I. Arnold and A. Avez, Problèmes Ergodiques de la Mécanique Classique, Gauthier-Villars, Paris, 1967.  Google Scholar

[2]

H. Broer, R. Roussarie and C. Simó, Invariant circles in the Bogdanov-Takens bifurcation for diffeomorphism, Ergod. Th. & Dynam. Systems, 16 (1996), 1147-1172. doi: 10.1017/S0143385700009950.  Google Scholar

[3]

H. Broer and C. Simó, Hill's equation with quasi-periodic forcing: Resonance tongues, instability pockets and global phenomena, Bul. Soc. Bras. Mat., 29 (1998), 253-293. doi: 10.1007/BF01237651.  Google Scholar

[4]

P. M. Cincotta, C. M. Giordano and C. Simó, Phase space structure of multidimensional systems by means of the Mean Exponential Growth factor of Nearby Orbits (MEGNO), Physica D, 182 (2003), 151-178. doi: 10.1016/S0167-2789(03)00103-9.  Google Scholar

[5]

A. Delshams, V. Gelfreich, À. Jorba and T. Martínez-Seara, Exponentially small splitting of separatrices under fast quasiperiodic forcing, Comm. Math. Phys., 189 (1997), 35-71. doi: 10.1007/s002200050190.  Google Scholar

[6]

A. Delshams, M. Gonchenko and P. Gutiérrez, Exponentially small lower bounds for the splitting of separatrices to whiskered tori with frequencies of constant type,, Preprint, (): 14.   Google Scholar

[7]

E. Fontich and C. Simó, Invariant manifolds for near identity differentiable maps and splitting of separatrices, Ergod. Th. & Dynam. Systems, 10 (1990), 319-346. doi: 10.1017/S0143385700005575.  Google Scholar

[8]

E. Fontich and C. Simó, The splitting of separatrices for analytic diffeomorphisms, Ergod. Th. & Dynam. Systems, 10 (1990), 295-318. doi: 10.1017/S0143385700005563.  Google Scholar

[9]

C. Froeschlé, Numerical study of a four-dimensional mapping, Astronom. and Astrophys., 16 (1972), 172-189.  Google Scholar

[10]

V. Gelfreich and C. Simó, High-precision computations of divergent asymptotic series and homoclinic phenomena, Discrete and Continuous Dynamical Systems B, 10 (2008), 511-536. doi: 10.3934/dcdsb.2008.10.511.  Google Scholar

[11]

V. Gelfreich, C. Simó and A. Vieiro, Dynamics of $4D$ symplectic maps near a double resonance, Physica D, 243 (2013), 92-110. doi: 10.1016/j.physd.2012.10.001.  Google Scholar

[12]

A. Giorgilli, A. Delshams, E. Fontich, L. Galgani and C. Simó, Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem, Journal of Differential Equations, 77 (1989), 167-198. doi: 10.1016/0022-0396(89)90161-7.  Google Scholar

[13]

G. Gómez, J. M. Mondelo and C. Simó, A collocation method for the numerical fourier analysis of quasi-periodic functions. I: Numerical tests and examples, Discrete and Continuous Dynamical Systems B, 14 (2010), 41-74. doi: 10.3934/dcdsb.2010.14.41.  Google Scholar

[14]

G. Gómez, J. M. Mondelo and C. Simó, A Collocation Method for the Numerical Fourier Analysis of Quasi-periodic Functions. II: Analytical error estimates, Discrete and Continuous Dynamical Systems B, 14 (2010), 75-109. doi: 10.3934/dcdsb.2010.14.75.  Google Scholar

[15]

M. Hénon and C. Heiles, The applicability of the third integral of motion: Some numerical experiments, Astronom. J., 69 (1964), 73-79. doi: 10.1086/109234.  Google Scholar

[16]

H. Ito, Non-integrability of the Hénon-Heiles system and a theorem of Ziglin, Koday Math. J., 8 (1985), 120-138. doi: 10.2996/kmj/1138037004.  Google Scholar

[17]

J. Laskar, The chaotic motion of the solar system. A numerical estimate of the size of the chaotic zones, Icarus, 88 (1990), 266-291. doi: 10.1016/0019-1035(90)90084-M.  Google Scholar

[18]

F. Ledrappier, M. Shub, C. Simó and A. Wilkinson, Random versus deterministic exponents in a rich family of diffeomorphisms, J. Statist. Phys., 113 (2003), 85-149. doi: 10.1023/A:1025770720803.  Google Scholar

[19]

A. Luque and J. Villanueva, Quasi-Periodic Frequency Analysis Using Averaging-Extrapolation Methods, SIAM J. Appl. Dyn. Syst., 13 (2014), 1-46. doi: 10.1137/130920113.  Google Scholar

[20]

R. Martínez and C. Simó, Non-integrability of Hamiltonian systems through high order variational equations: Summary of results and examples, Regular and Chaotic Dynamics, 14 (2009), 323-348. doi: 10.1134/S1560354709030010.  Google Scholar

[21]

R. Martínez and C. Simó, Non-integrability of the degenerate cases of the Swinging Atwood's Machine using higher order variational equations, Discrete and Continuous Dynamical Systems A, 29 (2011), 1-24. doi: 10.3934/dcds.2011.29.1.  Google Scholar

[22]

N. Miguel, C. Simó and A. Vieiro, From the Hénon conservative map to the Chirikov standard map for large parameter values, Regular and Chaotic Dynamics, 18 (2013), 469-489. doi: 10.1134/S1560354713050018.  Google Scholar

[23]

J. J. Morales-Ruiz, Differential Galois Theory and Non-Integrability of Hamiltonian Systems, Progress in Mathematics, 179, Birkhäuser, 1999. doi: 10.1007/978-3-0348-8718-2.  Google Scholar

[24]

J. J. Morales-Ruiz and J. P. Ramis, Galoisian obstructions to integrability of Hamiltonian systems I, Methods and Applications of Analysis, 8 (2001), 33-95.  Google Scholar

[25]

J. J. Morales-Ruiz and J. P. Ramis, Galoisian obstructions to integrability of Hamiltonian systems II, Methods and Applications of Analysis, 8 (2001), 97-112. Google Scholar

[26]

J. J. Morales, J. P. Ramis and C. Simó, Integrability of hamiltonian systems and differential galois groups of higher variational equations, Annales Sci. de l'ENS 4$^e$ série, 40 (2007), 845-884. doi: 10.1016/j.ansens.2007.09.002.  Google Scholar

[27]

J. J. Morales and C. Simó, Non integrability criteria for Hamiltonians in the case of Lamé normal variational equations, J. Diff. Equations, 129 (1996), 111-135. doi: 10.1006/jdeq.1996.0113.  Google Scholar

[28]

A. Morbidelli and A. Giorgilli, Superexponential stability of KAM tori, J. Statist. Phys, 78 (1995), 1607-1617. doi: 10.1007/BF02180145.  Google Scholar

[29]

J. Moser, Stable and Random Motions in Dynamical Systems: With Special Emphasis on Celestial Mechanics, Princeton University Press, 1973.  Google Scholar

[30]

A. I. Neishtadt, The separation of motions in systems with rapidly rotating phase, Prikladnaja Matematika i Mekhanika, 48 (1984), 133-139. doi: 10.1016/0021-8928(84)90078-9.  Google Scholar

[31]

N. N. Nekhorosev, An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems, Russian Mathematical Surveys, 32 (6) (1977), 5-66.  Google Scholar

[32]

J. B. Pesin, Characteristic exponents and smooth ergodic theory, Russian Math. Surveys, 32 (4) (1977), 55-112.  Google Scholar

[33]

J. Sánchez, M. Net and C. Simó, Computation of invariant tori by Newton-Krylov methods in large-scale dissipative systems, Physica D, 239 (2010), 123-133. doi: 10.1016/j.physd.2009.10.012.  Google Scholar

[34]

C. Siegel and J. Moser, Lectures on Celestial Mechanics, Springer, 1971.  Google Scholar

[35]

C. Simó, On the analytical and numerical approximation of invariant manifolds, Modern methods in celestial mechanics, D. Benest and C. Froeschlé, editors, 285-330, Editions Frontières, Paris, (1990). (Also available at http://www.maia.ub.es/dsg/2004/). Google Scholar

[36]

C. Simó, Averaging under fast quasiperiodic forcing, Integrable and chaotic behaviour in Hamiltonian Systems, I. Seimenis, editor,, Plenum Pub. Co., New York, 331 (1994), 13-34.  Google Scholar

[37]

C. Simó, Invariant Curves of Perturbations of Non Twist Integrable Area Preserving Maps, Regular and Chaotic Dynamics, 3 (1998), 180-195. doi: 10.1070/rd1998v003n03ABEH000088.  Google Scholar

[38]

C. Simó, Global Dynamics and Fast Indicators, Global Analysis of Dynamical Systems, H. W. Broer, B. Krauskopf and G. Vegter, editors, 373-389, IOP Publishing, Bristol, (2001).  Google Scholar

[39]

C. Simó and T. Stuchi, Central Stable/Unstable Manifolds and the destruction of KAM tori in the planar Hill problem, Physica D, 140 (2000), 1-32. doi: 10.1016/S0167-2789(99)00211-0.  Google Scholar

[40]

C. Simó, P. Sousa-Silva and M. Terra, Practical Stability Domains near $L_{4,5}$ in the Restricted Three-Body Problem: Some preliminary facts, Progress and Challenges in Dynamical Systems, Springer Proceedings in Mathematics & Statistics Series, 54, S. Ibáñez et al., editors, 367-382, Springer, (2013). Google Scholar

[41]

C. Simó, P. Sousa-Silva and M. Terra, Evidences of Diffusion Related to the Centre Manifold of $L_3$ in the 3D RTBP,, Work in progress., ().   Google Scholar

[42]

C. Simó and D. Treschev, Stability islands in the vicinity of separatrices of near-integrable symplectic maps, Discrete and Continuous Dynamical Systems B, 10 (2008), 681-698. doi: 10.3934/dcdsb.2008.10.681.  Google Scholar

[43]

C. Simó and A. Vieiro, Resonant zones, inner and outer splittings in generic and low order resonances of Area Preserving Maps, Nonlinearity, 22 (2009), 1191-1245. doi: 10.1088/0951-7715/22/5/012.  Google Scholar

[44]

C. Simó and A. Vieiro, Dynamics in chaotic zones of area preserving maps: close to separatrix and global instability zones, Physica D, 240 (2011), 732-753. doi: 10.1016/j.physd.2010.12.005.  Google Scholar

[45]

D. Treschev, Multidimensional symplectic separatrix maps, J. Nonlinear Sci., 12 (2002), 27-58. doi: 10.1007/s00332-001-0460-2.  Google Scholar

[46]

S. L. Ziglin, Branching of solutions and non-existence of first integrals in Hamiltonian mechanics I, Funct. Anal. Appl., 16 (1982), 181-189. Google Scholar

[1]

Paul A. Glendinning, David J. W. Simpson. A constructive approach to robust chaos using invariant manifolds and expanding cones. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3367-3387. doi: 10.3934/dcds.2020409

[2]

Rongmei Cao, Jiangong You. The existence of integrable invariant manifolds of Hamiltonian partial differential equations. Discrete & Continuous Dynamical Systems, 2006, 16 (1) : 227-234. doi: 10.3934/dcds.2006.16.227

[3]

Zhang Chen, Xiliang Li, Bixiang Wang. Invariant measures of stochastic delay lattice systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3235-3269. doi: 10.3934/dcdsb.2020226

[4]

Ivan Werner. Equilibrium states and invariant measures for random dynamical systems. Discrete & Continuous Dynamical Systems, 2015, 35 (3) : 1285-1326. doi: 10.3934/dcds.2015.35.1285

[5]

Victor Magron, Marcelo Forets, Didier Henrion. Semidefinite approximations of invariant measures for polynomial systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6745-6770. doi: 10.3934/dcdsb.2019165

[6]

Fuzhong Cong, Yong Li. Invariant hyperbolic tori for Hamiltonian systems with degeneracy. Discrete & Continuous Dynamical Systems, 1997, 3 (3) : 371-382. doi: 10.3934/dcds.1997.3.371

[7]

Fei Liu, Jaume Llibre, Xiang Zhang. Heteroclinic orbits for a class of Hamiltonian systems on Riemannian manifolds. Discrete & Continuous Dynamical Systems, 2011, 29 (3) : 1097-1111. doi: 10.3934/dcds.2011.29.1097

[8]

Xin Li, Wenxian Shen, Chunyou Sun. Invariant measures for complex-valued dissipative dynamical systems and applications. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2427-2446. doi: 10.3934/dcdsb.2017124

[9]

Grzegorz Łukaszewicz, James C. Robinson. Invariant measures for non-autonomous dissipative dynamical systems. Discrete & Continuous Dynamical Systems, 2014, 34 (10) : 4211-4222. doi: 10.3934/dcds.2014.34.4211

[10]

Kaizhi Wang. Action minimizing stochastic invariant measures for a class of Lagrangian systems. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1211-1223. doi: 10.3934/cpaa.2008.7.1211

[11]

C. Chandre. Renormalization for cubic frequency invariant tori in Hamiltonian systems with two degrees of freedom. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 457-465. doi: 10.3934/dcdsb.2002.2.457

[12]

Marcel Guardia. Splitting of separatrices in the resonances of nearly integrable Hamiltonian systems of one and a half degrees of freedom. Discrete & Continuous Dynamical Systems, 2013, 33 (7) : 2829-2859. doi: 10.3934/dcds.2013.33.2829

[13]

Amadeu Delshams, Pere Gutiérrez, Tere M. Seara. Exponentially small splitting for whiskered tori in Hamiltonian systems: flow-box coordinates and upper bounds. Discrete & Continuous Dynamical Systems, 2004, 11 (4) : 785-826. doi: 10.3934/dcds.2004.11.785

[14]

Amadeu Delshams, Pere Gutiérrez. Exponentially small splitting for whiskered tori in Hamiltonian systems: continuation of transverse homoclinic orbits. Discrete & Continuous Dynamical Systems, 2004, 11 (4) : 757-783. doi: 10.3934/dcds.2004.11.757

[15]

Kazuyuki Yagasaki. Higher-order Melnikov method and chaos for two-degree-of-freedom Hamiltonian systems with saddle-centers. Discrete & Continuous Dynamical Systems, 2011, 29 (1) : 387-402. doi: 10.3934/dcds.2011.29.387

[16]

José Miguel Pasini, Tuhin Sahai. Polynomial chaos based uncertainty quantification in Hamiltonian, multi-time scale, and chaotic systems. Journal of Computational Dynamics, 2014, 1 (2) : 357-375. doi: 10.3934/jcd.2014.1.357

[17]

Lidong Wang, Xiang Wang, Fengchun Lei, Heng Liu. Mixing invariant extremal distributional chaos. Discrete & Continuous Dynamical Systems, 2016, 36 (11) : 6533-6538. doi: 10.3934/dcds.2016082

[18]

Oliver Jenkinson. Optimization and majorization of invariant measures. Electronic Research Announcements, 2007, 13: 1-12.

[19]

Siniša Slijepčević. Stability of invariant measures. Discrete & Continuous Dynamical Systems, 2009, 24 (4) : 1345-1363. doi: 10.3934/dcds.2009.24.1345

[20]

Rovella Alvaro, Vilamajó Francesc, Romero Neptalí. Invariant manifolds for delay endomorphisms. Discrete & Continuous Dynamical Systems, 2001, 7 (1) : 35-50. doi: 10.3934/dcds.2001.7.35

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]