\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Measuring the total amount of chaos in some Hamiltonian systems

Abstract Related Papers Cited by
  • We consider some simple Hamiltonian systems, variants or generalizations of the Hénon-Heiles system, in two and three degrees of freedom, around a positive definite elliptic point, in resonant and non-resonant cases. After reviewing some theoretical background, we determine a measure of the domain of chaoticity by looking at the frequency of positive Lyapunov exponents in a sample of initial conditions. The question we study is how this measure depends on the energy and parameters and which are the dynamical objects responsible for the observed behaviour.
    Mathematics Subject Classification: Primary: 70H07, 70K70; Secondary: 34D08, 37J40, 37J45, 37M25.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    V. I. Arnold and A. Avez, Problèmes Ergodiques de la Mécanique Classique, Gauthier-Villars, Paris, 1967.

    [2]

    H. Broer, R. Roussarie and C. Simó, Invariant circles in the Bogdanov-Takens bifurcation for diffeomorphism, Ergod. Th. & Dynam. Systems, 16 (1996), 1147-1172.doi: 10.1017/S0143385700009950.

    [3]

    H. Broer and C. Simó, Hill's equation with quasi-periodic forcing: Resonance tongues, instability pockets and global phenomena, Bul. Soc. Bras. Mat., 29 (1998), 253-293.doi: 10.1007/BF01237651.

    [4]

    P. M. Cincotta, C. M. Giordano and C. Simó, Phase space structure of multidimensional systems by means of the Mean Exponential Growth factor of Nearby Orbits (MEGNO), Physica D, 182 (2003), 151-178.doi: 10.1016/S0167-2789(03)00103-9.

    [5]

    A. Delshams, V. Gelfreich, À. Jorba and T. Martínez-Seara, Exponentially small splitting of separatrices under fast quasiperiodic forcing, Comm. Math. Phys., 189 (1997), 35-71.doi: 10.1007/s002200050190.

    [6]

    A. Delshams, M. Gonchenko and P. Gutiérrez, Exponentially small lower bounds for the splitting of separatrices to whiskered tori with frequencies of constant type, Preprint,available at http://www.ma.utexas.edu/mp_arc-bin/mpa?yn=14-5.

    [7]

    E. Fontich and C. Simó, Invariant manifolds for near identity differentiable maps and splitting of separatrices, Ergod. Th. & Dynam. Systems, 10 (1990), 319-346.doi: 10.1017/S0143385700005575.

    [8]

    E. Fontich and C. Simó, The splitting of separatrices for analytic diffeomorphisms, Ergod. Th. & Dynam. Systems, 10 (1990), 295-318.doi: 10.1017/S0143385700005563.

    [9]

    C. Froeschlé, Numerical study of a four-dimensional mapping, Astronom. and Astrophys., 16 (1972), 172-189.

    [10]

    V. Gelfreich and C. Simó, High-precision computations of divergent asymptotic series and homoclinic phenomena, Discrete and Continuous Dynamical Systems B, 10 (2008), 511-536.doi: 10.3934/dcdsb.2008.10.511.

    [11]

    V. Gelfreich, C. Simó and A. Vieiro, Dynamics of $4D$ symplectic maps near a double resonance, Physica D, 243 (2013), 92-110.doi: 10.1016/j.physd.2012.10.001.

    [12]

    A. Giorgilli, A. Delshams, E. Fontich, L. Galgani and C. Simó, Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem, Journal of Differential Equations, 77 (1989), 167-198.doi: 10.1016/0022-0396(89)90161-7.

    [13]

    G. Gómez, J. M. Mondelo and C. Simó, A collocation method for the numerical fourier analysis of quasi-periodic functions. I: Numerical tests and examples, Discrete and Continuous Dynamical Systems B, 14 (2010), 41-74.doi: 10.3934/dcdsb.2010.14.41.

    [14]

    G. Gómez, J. M. Mondelo and C. Simó, A Collocation Method for the Numerical Fourier Analysis of Quasi-periodic Functions. II: Analytical error estimates, Discrete and Continuous Dynamical Systems B, 14 (2010), 75-109.doi: 10.3934/dcdsb.2010.14.75.

    [15]

    M. Hénon and C. Heiles, The applicability of the third integral of motion: Some numerical experiments, Astronom. J., 69 (1964), 73-79.doi: 10.1086/109234.

    [16]

    H. Ito, Non-integrability of the Hénon-Heiles system and a theorem of Ziglin, Koday Math. J., 8 (1985), 120-138.doi: 10.2996/kmj/1138037004.

    [17]

    J. Laskar, The chaotic motion of the solar system. A numerical estimate of the size of the chaotic zones, Icarus, 88 (1990), 266-291.doi: 10.1016/0019-1035(90)90084-M.

    [18]

    F. Ledrappier, M. Shub, C. Simó and A. Wilkinson, Random versus deterministic exponents in a rich family of diffeomorphisms, J. Statist. Phys., 113 (2003), 85-149.doi: 10.1023/A:1025770720803.

    [19]

    A. Luque and J. Villanueva, Quasi-Periodic Frequency Analysis Using Averaging-Extrapolation Methods, SIAM J. Appl. Dyn. Syst., 13 (2014), 1-46.doi: 10.1137/130920113.

    [20]

    R. Martínez and C. Simó, Non-integrability of Hamiltonian systems through high order variational equations: Summary of results and examples, Regular and Chaotic Dynamics, 14 (2009), 323-348.doi: 10.1134/S1560354709030010.

    [21]

    R. Martínez and C. Simó, Non-integrability of the degenerate cases of the Swinging Atwood's Machine using higher order variational equations, Discrete and Continuous Dynamical Systems A, 29 (2011), 1-24.doi: 10.3934/dcds.2011.29.1.

    [22]

    N. Miguel, C. Simó and A. Vieiro, From the Hénon conservative map to the Chirikov standard map for large parameter values, Regular and Chaotic Dynamics, 18 (2013), 469-489.doi: 10.1134/S1560354713050018.

    [23]

    J. J. Morales-Ruiz, Differential Galois Theory and Non-Integrability of Hamiltonian Systems, Progress in Mathematics, 179, Birkhäuser, 1999.doi: 10.1007/978-3-0348-8718-2.

    [24]

    J. J. Morales-Ruiz and J. P. Ramis, Galoisian obstructions to integrability of Hamiltonian systems I, Methods and Applications of Analysis, 8 (2001), 33-95.

    [25]

    J. J. Morales-Ruiz and J. P. Ramis, Galoisian obstructions to integrability of Hamiltonian systems II, Methods and Applications of Analysis, 8 (2001), 97-112.

    [26]

    J. J. Morales, J. P. Ramis and C. Simó, Integrability of hamiltonian systems and differential galois groups of higher variational equations, Annales Sci. de l'ENS 4$^e$ série, 40 (2007), 845-884.doi: 10.1016/j.ansens.2007.09.002.

    [27]

    J. J. Morales and C. Simó, Non integrability criteria for Hamiltonians in the case of Lamé normal variational equations, J. Diff. Equations, 129 (1996), 111-135.doi: 10.1006/jdeq.1996.0113.

    [28]

    A. Morbidelli and A. Giorgilli, Superexponential stability of KAM tori, J. Statist. Phys, 78 (1995), 1607-1617.doi: 10.1007/BF02180145.

    [29]

    J. Moser, Stable and Random Motions in Dynamical Systems: With Special Emphasis on Celestial Mechanics, Princeton University Press, 1973.

    [30]

    A. I. Neishtadt, The separation of motions in systems with rapidly rotating phase, Prikladnaja Matematika i Mekhanika, 48 (1984), 133-139.doi: 10.1016/0021-8928(84)90078-9.

    [31]

    N. N. Nekhorosev, An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems, Russian Mathematical Surveys, 32 (6) (1977), 5-66.

    [32]

    J. B. Pesin, Characteristic exponents and smooth ergodic theory, Russian Math. Surveys, 32 (4) (1977), 55-112.

    [33]

    J. Sánchez, M. Net and C. Simó, Computation of invariant tori by Newton-Krylov methods in large-scale dissipative systems, Physica D, 239 (2010), 123-133.doi: 10.1016/j.physd.2009.10.012.

    [34]

    C. Siegel and J. Moser, Lectures on Celestial Mechanics, Springer, 1971.

    [35]

    C. Simó, On the analytical and numerical approximation of invariant manifolds, Modern methods in celestial mechanics, D. Benest and C. Froeschlé, editors, 285-330, Editions Frontières, Paris, (1990). (Also available at http://www.maia.ub.es/dsg/2004/).

    [36]

    C. Simó, Averaging under fast quasiperiodic forcing, Integrable and chaotic behaviour in Hamiltonian Systems, I. Seimenis, editor,, Plenum Pub. Co., New York, 331 (1994), 13-34.

    [37]

    C. Simó, Invariant Curves of Perturbations of Non Twist Integrable Area Preserving Maps, Regular and Chaotic Dynamics, 3 (1998), 180-195.doi: 10.1070/rd1998v003n03ABEH000088.

    [38]

    C. Simó, Global Dynamics and Fast Indicators, Global Analysis of Dynamical Systems, H. W. Broer, B. Krauskopf and G. Vegter, editors, 373-389, IOP Publishing, Bristol, (2001).

    [39]

    C. Simó and T. Stuchi, Central Stable/Unstable Manifolds and the destruction of KAM tori in the planar Hill problem, Physica D, 140 (2000), 1-32.doi: 10.1016/S0167-2789(99)00211-0.

    [40]

    C. Simó, P. Sousa-Silva and M. Terra, Practical Stability Domains near $L_{4,5}$ in the Restricted Three-Body Problem: Some preliminary facts, Progress and Challenges in Dynamical Systems, Springer Proceedings in Mathematics & Statistics Series, 54, S. Ibáñez et al., editors, 367-382, Springer, (2013).

    [41]

    C. Simó, P. Sousa-Silva and M. TerraEvidences of Diffusion Related to the Centre Manifold of $L_3$ in the 3D RTBP, Work in progress.

    [42]

    C. Simó and D. Treschev, Stability islands in the vicinity of separatrices of near-integrable symplectic maps, Discrete and Continuous Dynamical Systems B, 10 (2008), 681-698.doi: 10.3934/dcdsb.2008.10.681.

    [43]

    C. Simó and A. Vieiro, Resonant zones, inner and outer splittings in generic and low order resonances of Area Preserving Maps, Nonlinearity, 22 (2009), 1191-1245.doi: 10.1088/0951-7715/22/5/012.

    [44]

    C. Simó and A. Vieiro, Dynamics in chaotic zones of area preserving maps: close to separatrix and global instability zones, Physica D, 240 (2011), 732-753.doi: 10.1016/j.physd.2010.12.005.

    [45]

    D. Treschev, Multidimensional symplectic separatrix maps, J. Nonlinear Sci., 12 (2002), 27-58.doi: 10.1007/s00332-001-0460-2.

    [46]

    S. L. Ziglin, Branching of solutions and non-existence of first integrals in Hamiltonian mechanics I, Funct. Anal. Appl., 16 (1982), 181-189.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(69) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return