Citation: |
[1] |
V. I. Arnold and A. Avez, Problèmes Ergodiques de la Mécanique Classique, Gauthier-Villars, Paris, 1967. |
[2] |
H. Broer, R. Roussarie and C. Simó, Invariant circles in the Bogdanov-Takens bifurcation for diffeomorphism, Ergod. Th. & Dynam. Systems, 16 (1996), 1147-1172.doi: 10.1017/S0143385700009950. |
[3] |
H. Broer and C. Simó, Hill's equation with quasi-periodic forcing: Resonance tongues, instability pockets and global phenomena, Bul. Soc. Bras. Mat., 29 (1998), 253-293.doi: 10.1007/BF01237651. |
[4] |
P. M. Cincotta, C. M. Giordano and C. Simó, Phase space structure of multidimensional systems by means of the Mean Exponential Growth factor of Nearby Orbits (MEGNO), Physica D, 182 (2003), 151-178.doi: 10.1016/S0167-2789(03)00103-9. |
[5] |
A. Delshams, V. Gelfreich, À. Jorba and T. Martínez-Seara, Exponentially small splitting of separatrices under fast quasiperiodic forcing, Comm. Math. Phys., 189 (1997), 35-71.doi: 10.1007/s002200050190. |
[6] |
A. Delshams, M. Gonchenko and P. Gutiérrez, Exponentially small lower bounds for the splitting of separatrices to whiskered tori with frequencies of constant type, Preprint,available at http://www.ma.utexas.edu/mp_arc-bin/mpa?yn=14-5. |
[7] |
E. Fontich and C. Simó, Invariant manifolds for near identity differentiable maps and splitting of separatrices, Ergod. Th. & Dynam. Systems, 10 (1990), 319-346.doi: 10.1017/S0143385700005575. |
[8] |
E. Fontich and C. Simó, The splitting of separatrices for analytic diffeomorphisms, Ergod. Th. & Dynam. Systems, 10 (1990), 295-318.doi: 10.1017/S0143385700005563. |
[9] |
C. Froeschlé, Numerical study of a four-dimensional mapping, Astronom. and Astrophys., 16 (1972), 172-189. |
[10] |
V. Gelfreich and C. Simó, High-precision computations of divergent asymptotic series and homoclinic phenomena, Discrete and Continuous Dynamical Systems B, 10 (2008), 511-536.doi: 10.3934/dcdsb.2008.10.511. |
[11] |
V. Gelfreich, C. Simó and A. Vieiro, Dynamics of $4D$ symplectic maps near a double resonance, Physica D, 243 (2013), 92-110.doi: 10.1016/j.physd.2012.10.001. |
[12] |
A. Giorgilli, A. Delshams, E. Fontich, L. Galgani and C. Simó, Effective stability for a Hamiltonian system near an elliptic equilibrium point, with an application to the restricted three body problem, Journal of Differential Equations, 77 (1989), 167-198.doi: 10.1016/0022-0396(89)90161-7. |
[13] |
G. Gómez, J. M. Mondelo and C. Simó, A collocation method for the numerical fourier analysis of quasi-periodic functions. I: Numerical tests and examples, Discrete and Continuous Dynamical Systems B, 14 (2010), 41-74.doi: 10.3934/dcdsb.2010.14.41. |
[14] |
G. Gómez, J. M. Mondelo and C. Simó, A Collocation Method for the Numerical Fourier Analysis of Quasi-periodic Functions. II: Analytical error estimates, Discrete and Continuous Dynamical Systems B, 14 (2010), 75-109.doi: 10.3934/dcdsb.2010.14.75. |
[15] |
M. Hénon and C. Heiles, The applicability of the third integral of motion: Some numerical experiments, Astronom. J., 69 (1964), 73-79.doi: 10.1086/109234. |
[16] |
H. Ito, Non-integrability of the Hénon-Heiles system and a theorem of Ziglin, Koday Math. J., 8 (1985), 120-138.doi: 10.2996/kmj/1138037004. |
[17] |
J. Laskar, The chaotic motion of the solar system. A numerical estimate of the size of the chaotic zones, Icarus, 88 (1990), 266-291.doi: 10.1016/0019-1035(90)90084-M. |
[18] |
F. Ledrappier, M. Shub, C. Simó and A. Wilkinson, Random versus deterministic exponents in a rich family of diffeomorphisms, J. Statist. Phys., 113 (2003), 85-149.doi: 10.1023/A:1025770720803. |
[19] |
A. Luque and J. Villanueva, Quasi-Periodic Frequency Analysis Using Averaging-Extrapolation Methods, SIAM J. Appl. Dyn. Syst., 13 (2014), 1-46.doi: 10.1137/130920113. |
[20] |
R. Martínez and C. Simó, Non-integrability of Hamiltonian systems through high order variational equations: Summary of results and examples, Regular and Chaotic Dynamics, 14 (2009), 323-348.doi: 10.1134/S1560354709030010. |
[21] |
R. Martínez and C. Simó, Non-integrability of the degenerate cases of the Swinging Atwood's Machine using higher order variational equations, Discrete and Continuous Dynamical Systems A, 29 (2011), 1-24.doi: 10.3934/dcds.2011.29.1. |
[22] |
N. Miguel, C. Simó and A. Vieiro, From the Hénon conservative map to the Chirikov standard map for large parameter values, Regular and Chaotic Dynamics, 18 (2013), 469-489.doi: 10.1134/S1560354713050018. |
[23] |
J. J. Morales-Ruiz, Differential Galois Theory and Non-Integrability of Hamiltonian Systems, Progress in Mathematics, 179, Birkhäuser, 1999.doi: 10.1007/978-3-0348-8718-2. |
[24] |
J. J. Morales-Ruiz and J. P. Ramis, Galoisian obstructions to integrability of Hamiltonian systems I, Methods and Applications of Analysis, 8 (2001), 33-95. |
[25] |
J. J. Morales-Ruiz and J. P. Ramis, Galoisian obstructions to integrability of Hamiltonian systems II, Methods and Applications of Analysis, 8 (2001), 97-112. |
[26] |
J. J. Morales, J. P. Ramis and C. Simó, Integrability of hamiltonian systems and differential galois groups of higher variational equations, Annales Sci. de l'ENS 4$^e$ série, 40 (2007), 845-884.doi: 10.1016/j.ansens.2007.09.002. |
[27] |
J. J. Morales and C. Simó, Non integrability criteria for Hamiltonians in the case of Lamé normal variational equations, J. Diff. Equations, 129 (1996), 111-135.doi: 10.1006/jdeq.1996.0113. |
[28] |
A. Morbidelli and A. Giorgilli, Superexponential stability of KAM tori, J. Statist. Phys, 78 (1995), 1607-1617.doi: 10.1007/BF02180145. |
[29] |
J. Moser, Stable and Random Motions in Dynamical Systems: With Special Emphasis on Celestial Mechanics, Princeton University Press, 1973. |
[30] |
A. I. Neishtadt, The separation of motions in systems with rapidly rotating phase, Prikladnaja Matematika i Mekhanika, 48 (1984), 133-139.doi: 10.1016/0021-8928(84)90078-9. |
[31] |
N. N. Nekhorosev, An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems, Russian Mathematical Surveys, 32 (6) (1977), 5-66. |
[32] |
J. B. Pesin, Characteristic exponents and smooth ergodic theory, Russian Math. Surveys, 32 (4) (1977), 55-112. |
[33] |
J. Sánchez, M. Net and C. Simó, Computation of invariant tori by Newton-Krylov methods in large-scale dissipative systems, Physica D, 239 (2010), 123-133.doi: 10.1016/j.physd.2009.10.012. |
[34] |
C. Siegel and J. Moser, Lectures on Celestial Mechanics, Springer, 1971. |
[35] |
C. Simó, On the analytical and numerical approximation of invariant manifolds, Modern methods in celestial mechanics, D. Benest and C. Froeschlé, editors, 285-330, Editions Frontières, Paris, (1990). (Also available at http://www.maia.ub.es/dsg/2004/). |
[36] |
C. Simó, Averaging under fast quasiperiodic forcing, Integrable and chaotic behaviour in Hamiltonian Systems, I. Seimenis, editor,, Plenum Pub. Co., New York, 331 (1994), 13-34. |
[37] |
C. Simó, Invariant Curves of Perturbations of Non Twist Integrable Area Preserving Maps, Regular and Chaotic Dynamics, 3 (1998), 180-195.doi: 10.1070/rd1998v003n03ABEH000088. |
[38] |
C. Simó, Global Dynamics and Fast Indicators, Global Analysis of Dynamical Systems, H. W. Broer, B. Krauskopf and G. Vegter, editors, 373-389, IOP Publishing, Bristol, (2001). |
[39] |
C. Simó and T. Stuchi, Central Stable/Unstable Manifolds and the destruction of KAM tori in the planar Hill problem, Physica D, 140 (2000), 1-32.doi: 10.1016/S0167-2789(99)00211-0. |
[40] |
C. Simó, P. Sousa-Silva and M. Terra, Practical Stability Domains near $L_{4,5}$ in the Restricted Three-Body Problem: Some preliminary facts, Progress and Challenges in Dynamical Systems, Springer Proceedings in Mathematics & Statistics Series, 54, S. Ibáñez et al., editors, 367-382, Springer, (2013). |
[41] |
C. Simó, P. Sousa-Silva and M. Terra, Evidences of Diffusion Related to the Centre Manifold of $L_3$ in the 3D RTBP, Work in progress. |
[42] |
C. Simó and D. Treschev, Stability islands in the vicinity of separatrices of near-integrable symplectic maps, Discrete and Continuous Dynamical Systems B, 10 (2008), 681-698.doi: 10.3934/dcdsb.2008.10.681. |
[43] |
C. Simó and A. Vieiro, Resonant zones, inner and outer splittings in generic and low order resonances of Area Preserving Maps, Nonlinearity, 22 (2009), 1191-1245.doi: 10.1088/0951-7715/22/5/012. |
[44] |
C. Simó and A. Vieiro, Dynamics in chaotic zones of area preserving maps: close to separatrix and global instability zones, Physica D, 240 (2011), 732-753.doi: 10.1016/j.physd.2010.12.005. |
[45] |
D. Treschev, Multidimensional symplectic separatrix maps, J. Nonlinear Sci., 12 (2002), 27-58.doi: 10.1007/s00332-001-0460-2. |
[46] |
S. L. Ziglin, Branching of solutions and non-existence of first integrals in Hamiltonian mechanics I, Funct. Anal. Appl., 16 (1982), 181-189. |