December  2014, 34(12): 5181-5209. doi: 10.3934/dcds.2014.34.5181

Multi-hump solutions of some singularly-perturbed equations of KdV type

1. 

Department of Mathematics, Korea University, Seoul, South Korea

2. 

Hyein Engineering and Construction, Changwon Kyungnam, South Korea

3. 

Coastal Development and Ocean Energy Research Department, Korea Institute of Ocean Science and Technology, Ansan, South Korea

4. 

Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, United States

5. 

Department of Mathematics, Ajou University, Suwon, South Korea

Received  August 2013 Revised  May 2014 Published  June 2014

This paper studies the existence of multi-hump solutions with oscillations at infinity for a class of singularly perturbed 4th-order nonlinear ordinary differential equations with $\epsilon > 0$ as a small parameter. When $\epsilon =0$, the equation becomes an equation of KdV type and has solitary-wave solutions. For $\epsilon > 0 $ small, it is proved that such equations have single-hump (also called solitary wave or homoclinic) solutions with small oscillations at infinity, which approach to the solitary-wave solutions for $\epsilon = 0$ as $\epsilon$ goes to zero. Furthermore, it is shown that for small $\epsilon > 0$ the equations have two-hump solutions with oscillations at infinity. These two-hump solutions can be obtained by patching two appropriate single-hump solutions together. The amplitude of the oscillations at infinity is algebraically small with respect to $\epsilon$ as $\epsilon \rightarrow 0$. The idea of the proof may be generalized to prove the existence of symmetric solutions of $2^n$-humps with $n=2,3,\dots,$ for the equations. However, this method cannot be applied to show the existence of general nonsymmetric multi-hump solutions.
Citation: J. W. Choi, D. S. Lee, S. H. Oh, S. M. Sun, S. I. Whang. Multi-hump solutions of some singularly-perturbed equations of KdV type. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5181-5209. doi: 10.3934/dcds.2014.34.5181
References:
[1]

C. J. Amick and K. Kirchgässner, Solitary water-waves in the presence of surface tension,, Arch. Rational Mech. Anal., 105 (1989), 1. doi: 10.1007/BF00251596. Google Scholar

[2]

C. J. Amick and J. F. Toland, Solitary waves with surface tension $I$: Trajectories homoclinic to periodic orbits in four dimensions,, Arch. Rational Mech. Anal., 118 (1992), 37. doi: 10.1007/BF00375691. Google Scholar

[3]

J. T. Beale, Exact solitary water waves with capillary ripples at infinity,, Comm. Pure Appl. Math., 44 (1991), 211. doi: 10.1002/cpa.3160440204. Google Scholar

[4]

P. Bolle and B. Buffoni, Multibump homoclinic solutions to a centre equilibrium in a class of autonomous Hamiltonian systems,, Nonlinearity, 12 (1999), 1699. doi: 10.1088/0951-7715/12/6/317. Google Scholar

[5]

B. Buffoni, Infinitely many large amplitude homoclinic orbits for a class of autonomous Hamiltonian systems,, J. Differential Equations, 121 (1995), 109. doi: 10.1006/jdeq.1995.1123. Google Scholar

[6]

B. Buffoni, A. R. Champneys and J. F. Toland, Bifurcation and coalescence of a plethora of homoclinic orbits for a Hamiltonian system,, J. Dynam. Differential Equations, 8 (1996), 221. doi: 10.1007/BF02218892. Google Scholar

[7]

B. Buffoni and M. D. Groves, A multiplicity result for solitary gravity-capillary waves in deep water via critical-point theory,, Arch. Ration. Mech. Anal., 146 (1999), 183. doi: 10.1007/s002050050141. Google Scholar

[8]

B. Buffoni, M. D. Groves and J. F. Toland, A plethora of solitary gravity-capillary water waves with nearly critical Bond and Froude numbers,, Philos. Trans. Roy. Soc. London Ser. A, 354 (1996), 575. doi: 10.1098/rsta.1996.0020. Google Scholar

[9]

A. R. Champneys and M. Groves, A global investigation of solitary-wave solutions to a two-parameter model for water waves,, J. Fluid Mech., 342 (1997), 199. doi: 10.1017/S0022112097005193. Google Scholar

[10]

A. R. Champneys and J. F. Toland, Bifurcation of a plethora of multi-modal homoclinic orbits for autonomous Hamiltonian systems,, Nonlinearity, 6 (1993), 665. doi: 10.1088/0951-7715/6/5/002. Google Scholar

[11]

F. Dias and G. Iooss, Water-waves as a spatial dynamical system,, in Handbook of mathematical fluid dynamics, II (2003), 443. doi: 10.1016/S1874-5792(03)80012-5. Google Scholar

[12]

M. D. Groves and B. Sandstede, A plethora of three-dimensional periodic travelling gravity-capillary water waves with multipulse transverse profiles,, J. Nonlinear Sci., 14 (2004), 297. doi: 10.1007/BF02666024. Google Scholar

[13]

J. Hunter and J. Scheurle, Existence of perturbed solitary wave solutions to a model equation for water waves,, Phys. D, 32 (1988), 253. doi: 10.1016/0167-2789(88)90054-1. Google Scholar

[14]

G. Iooss and M. C. Pérouème, Perturbed homoclinic solutions in reversible 1:1 resonance vector fields,, J. Diff. Equ., 102 (1993), 62. doi: 10.1006/jdeq.1993.1022. Google Scholar

[15]

R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves,, J. Fluid Mech., 455 (2002), 63. doi: 10.1017/S0022112001007224. Google Scholar

[16]

E. Lombardi, Homoclinic orbits to exponentially small periodic orbits for a class of reversible systems. Application to water waves,, Arch. Rat. Mech. Anal., 137 (1997), 227. doi: 10.1007/s002050050029. Google Scholar

[17]

E. Lombardi, Oscillatory Integrals And Phenomena Beyond All Algebraic Orders, With Applications to Homoclinic Orbits in Reversible Systems,, Lecture Notes in Mathematics, 1741 (2000). doi: 10.1007/BFb0104102. Google Scholar

[18]

Y. Pomeau, A. Ramani and B. Grammaticos, Structural stability of the Korteweg-de Vries solitons under a singular perturbation,, Phys. D, 31 (1988), 127. doi: 10.1016/0167-2789(88)90018-8. Google Scholar

[19]

R. L. Sachs, Bifurcation for semi-linear elliptic problems on an infinite strip via the Nash-Moser technique,, in Analysis, (1990), 563. Google Scholar

[20]

S. M. Sun, Existence of a generalized solitary wave solution for water with positive Bond number smaller than 1/3,, J. Math. Anal. Appl., 156 (1991), 471. doi: 10.1016/0022-247X(91)90410-2. Google Scholar

[21]

S. M. Sun, On the oscillatory tails with arbitrary phase shift for solutions of the perturbed Korteweg-de Vries equation,, SIAM J. Appl. Math., 58 (1998), 1163. doi: 10.1137/S0036139996299212. Google Scholar

[22]

S. M. Sun and M. C. Shen, Exponentially small estimate for the amplitude of capillary ripples of a generalized solitary wave,, J. Math. Anal. Appl., 172 (1993), 533. doi: 10.1006/jmaa.1993.1042. Google Scholar

[23]

S. M. Sun and M. C. Shen, Solitary waves in a two-layer fluid with surface tension,, SIAM J. Math. Anal., 24 (1993), 866. doi: 10.1137/0524054. Google Scholar

[24]

S. M. Sun and M. C. Shen, Exponentially small estimate for a generalized solitary wave solution to the perturbed K-dV equation,, Nonlinear Anal., 23 (1994), 545. doi: 10.1016/0362-546X(94)90093-0. Google Scholar

show all references

References:
[1]

C. J. Amick and K. Kirchgässner, Solitary water-waves in the presence of surface tension,, Arch. Rational Mech. Anal., 105 (1989), 1. doi: 10.1007/BF00251596. Google Scholar

[2]

C. J. Amick and J. F. Toland, Solitary waves with surface tension $I$: Trajectories homoclinic to periodic orbits in four dimensions,, Arch. Rational Mech. Anal., 118 (1992), 37. doi: 10.1007/BF00375691. Google Scholar

[3]

J. T. Beale, Exact solitary water waves with capillary ripples at infinity,, Comm. Pure Appl. Math., 44 (1991), 211. doi: 10.1002/cpa.3160440204. Google Scholar

[4]

P. Bolle and B. Buffoni, Multibump homoclinic solutions to a centre equilibrium in a class of autonomous Hamiltonian systems,, Nonlinearity, 12 (1999), 1699. doi: 10.1088/0951-7715/12/6/317. Google Scholar

[5]

B. Buffoni, Infinitely many large amplitude homoclinic orbits for a class of autonomous Hamiltonian systems,, J. Differential Equations, 121 (1995), 109. doi: 10.1006/jdeq.1995.1123. Google Scholar

[6]

B. Buffoni, A. R. Champneys and J. F. Toland, Bifurcation and coalescence of a plethora of homoclinic orbits for a Hamiltonian system,, J. Dynam. Differential Equations, 8 (1996), 221. doi: 10.1007/BF02218892. Google Scholar

[7]

B. Buffoni and M. D. Groves, A multiplicity result for solitary gravity-capillary waves in deep water via critical-point theory,, Arch. Ration. Mech. Anal., 146 (1999), 183. doi: 10.1007/s002050050141. Google Scholar

[8]

B. Buffoni, M. D. Groves and J. F. Toland, A plethora of solitary gravity-capillary water waves with nearly critical Bond and Froude numbers,, Philos. Trans. Roy. Soc. London Ser. A, 354 (1996), 575. doi: 10.1098/rsta.1996.0020. Google Scholar

[9]

A. R. Champneys and M. Groves, A global investigation of solitary-wave solutions to a two-parameter model for water waves,, J. Fluid Mech., 342 (1997), 199. doi: 10.1017/S0022112097005193. Google Scholar

[10]

A. R. Champneys and J. F. Toland, Bifurcation of a plethora of multi-modal homoclinic orbits for autonomous Hamiltonian systems,, Nonlinearity, 6 (1993), 665. doi: 10.1088/0951-7715/6/5/002. Google Scholar

[11]

F. Dias and G. Iooss, Water-waves as a spatial dynamical system,, in Handbook of mathematical fluid dynamics, II (2003), 443. doi: 10.1016/S1874-5792(03)80012-5. Google Scholar

[12]

M. D. Groves and B. Sandstede, A plethora of three-dimensional periodic travelling gravity-capillary water waves with multipulse transverse profiles,, J. Nonlinear Sci., 14 (2004), 297. doi: 10.1007/BF02666024. Google Scholar

[13]

J. Hunter and J. Scheurle, Existence of perturbed solitary wave solutions to a model equation for water waves,, Phys. D, 32 (1988), 253. doi: 10.1016/0167-2789(88)90054-1. Google Scholar

[14]

G. Iooss and M. C. Pérouème, Perturbed homoclinic solutions in reversible 1:1 resonance vector fields,, J. Diff. Equ., 102 (1993), 62. doi: 10.1006/jdeq.1993.1022. Google Scholar

[15]

R. S. Johnson, Camassa-Holm, Korteweg-de Vries and related models for water waves,, J. Fluid Mech., 455 (2002), 63. doi: 10.1017/S0022112001007224. Google Scholar

[16]

E. Lombardi, Homoclinic orbits to exponentially small periodic orbits for a class of reversible systems. Application to water waves,, Arch. Rat. Mech. Anal., 137 (1997), 227. doi: 10.1007/s002050050029. Google Scholar

[17]

E. Lombardi, Oscillatory Integrals And Phenomena Beyond All Algebraic Orders, With Applications to Homoclinic Orbits in Reversible Systems,, Lecture Notes in Mathematics, 1741 (2000). doi: 10.1007/BFb0104102. Google Scholar

[18]

Y. Pomeau, A. Ramani and B. Grammaticos, Structural stability of the Korteweg-de Vries solitons under a singular perturbation,, Phys. D, 31 (1988), 127. doi: 10.1016/0167-2789(88)90018-8. Google Scholar

[19]

R. L. Sachs, Bifurcation for semi-linear elliptic problems on an infinite strip via the Nash-Moser technique,, in Analysis, (1990), 563. Google Scholar

[20]

S. M. Sun, Existence of a generalized solitary wave solution for water with positive Bond number smaller than 1/3,, J. Math. Anal. Appl., 156 (1991), 471. doi: 10.1016/0022-247X(91)90410-2. Google Scholar

[21]

S. M. Sun, On the oscillatory tails with arbitrary phase shift for solutions of the perturbed Korteweg-de Vries equation,, SIAM J. Appl. Math., 58 (1998), 1163. doi: 10.1137/S0036139996299212. Google Scholar

[22]

S. M. Sun and M. C. Shen, Exponentially small estimate for the amplitude of capillary ripples of a generalized solitary wave,, J. Math. Anal. Appl., 172 (1993), 533. doi: 10.1006/jmaa.1993.1042. Google Scholar

[23]

S. M. Sun and M. C. Shen, Solitary waves in a two-layer fluid with surface tension,, SIAM J. Math. Anal., 24 (1993), 866. doi: 10.1137/0524054. Google Scholar

[24]

S. M. Sun and M. C. Shen, Exponentially small estimate for a generalized solitary wave solution to the perturbed K-dV equation,, Nonlinear Anal., 23 (1994), 545. doi: 10.1016/0362-546X(94)90093-0. Google Scholar

[1]

Shengfu Deng. Generalized multi-hump wave solutions of Kdv-Kdv system of Boussinesq equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3671-3716. doi: 10.3934/dcds.2019150

[2]

Yi He, Gongbao Li. Concentrating solitary waves for a class of singularly perturbed quasilinear Schrödinger equations with a general nonlinearity. Mathematical Control & Related Fields, 2016, 6 (4) : 551-593. doi: 10.3934/mcrf.2016016

[3]

Bernhard Ruf, P. N. Srikanth. Hopf fibration and singularly perturbed elliptic equations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 823-838. doi: 10.3934/dcdss.2014.7.823

[4]

Minbo Yang, Yanheng Ding. Existence of solutions for singularly perturbed Schrödinger equations with nonlocal part. Communications on Pure & Applied Analysis, 2013, 12 (2) : 771-783. doi: 10.3934/cpaa.2013.12.771

[5]

Sergey Zelik. Asymptotic regularity of solutions of singularly perturbed damped wave equations with supercritical nonlinearities. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 351-392. doi: 10.3934/dcds.2004.11.351

[6]

Ibrahima Faye, Emmanuel Frénod, Diaraf Seck. Singularly perturbed degenerated parabolic equations and application to seabed morphodynamics in tided environment. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1001-1030. doi: 10.3934/dcds.2011.29.1001

[7]

Daomin Cao, Norman E. Dancer, Ezzat S. Noussair, Shunsen Yan. On the existence and profile of multi-peaked solutions to singularly perturbed semilinear Dirichlet problems. Discrete & Continuous Dynamical Systems - A, 1996, 2 (2) : 221-236. doi: 10.3934/dcds.1996.2.221

[8]

Andrés Ávila, Louis Jeanjean. A result on singularly perturbed elliptic problems. Communications on Pure & Applied Analysis, 2005, 4 (2) : 341-356. doi: 10.3934/cpaa.2005.4.341

[9]

Flaviano Battelli, Ken Palmer. Heteroclinic connections in singularly perturbed systems. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 431-461. doi: 10.3934/dcdsb.2008.9.431

[10]

Nara Bobko, Jorge P. Zubelli. A singularly perturbed HIV model with treatment and antigenic variation. Mathematical Biosciences & Engineering, 2015, 12 (1) : 1-21. doi: 10.3934/mbe.2015.12.1

[11]

Jacek Banasiak, Eddy Kimba Phongi, MirosŁaw Lachowicz. A singularly perturbed SIS model with age structure. Mathematical Biosciences & Engineering, 2013, 10 (3) : 499-521. doi: 10.3934/mbe.2013.10.499

[12]

Michele Coti Zelati. Global and exponential attractors for the singularly perturbed extensible beam. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 1041-1060. doi: 10.3934/dcds.2009.25.1041

[13]

Weichung Wang, Tsung-Fang Wu, Chien-Hsiang Liu. On the multiple spike solutions for singularly perturbed elliptic systems. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 237-258. doi: 10.3934/dcdsb.2013.18.237

[14]

Changming Song, Hong Li, Jina Li. Initial boundary value problem for the singularly perturbed Boussinesq-type equation. Conference Publications, 2013, 2013 (special) : 709-717. doi: 10.3934/proc.2013.2013.709

[15]

Pierre Fabrie, Cedric Galusinski, A. Miranville, Sergey Zelik. Uniform exponential attractors for a singularly perturbed damped wave equation. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 211-238. doi: 10.3934/dcds.2004.10.211

[16]

Shengbing Deng, Zied Khemiri, Fethi Mahmoudi. On spike solutions for a singularly perturbed problem in a compact riemannian manifold. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2063-2084. doi: 10.3934/cpaa.2018098

[17]

Adam Bobrowski, Radosław Bogucki. Two theorems on singularly perturbed semigroups with applications to models of applied mathematics. Discrete & Continuous Dynamical Systems - B, 2012, 17 (3) : 735-757. doi: 10.3934/dcdsb.2012.17.735

[18]

Ángela Jiménez-Casas, Aníbal Rodríguez-Bernal. Dynamic boundary conditions as limit of singularly perturbed parabolic problems. Conference Publications, 2011, 2011 (Special) : 737-746. doi: 10.3934/proc.2011.2011.737

[19]

Alexandre Mouton. Expansion of a singularly perturbed equation with a two-scale converging convection term. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1447-1473. doi: 10.3934/dcdss.2016058

[20]

Runchang Lin. A robust finite element method for singularly perturbed convection-diffusion problems. Conference Publications, 2009, 2009 (Special) : 496-505. doi: 10.3934/proc.2009.2009.496

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (2)

[Back to Top]