Citation: |
[1] |
D. Damjanović, Perturbations of smooth actions with non-trivial cohomology, Preprint. |
[2] |
D. Damjanović and A. Katok, Local rigidity of homogeneous parabolic actions: I. A model case, Journal of Modern Dynamics, 5 (2011), 203-235.doi: 10.3934/jmd.2011.5.203. |
[3] |
R. Feres and A. Katok, Ergodic theory and dynamics of G-spaces (with special em- phasis on rigidity phenomena), Handbook of dynamical systems, North-Holland, Amsterdam, 1A (2002), 665-763.doi: 10.1016/S1874-575X(02)80011-X. |
[4] |
R. Godemont, Sur la théori des représentations unitaires, Ann. of Math., 53 (1951), 68-124.doi: 10.2307/1969343. |
[5] |
L. Flaminio and G. Forni, Invariant distributions and time averages for horocycle flows, Duke J. of Math, 119 (2003), 465-526.doi: 10.1215/S0012-7094-03-11932-8. |
[6] |
F. Mautner, Unitary representations of locally compact groups. I, Ann. of Math. (2), 51 (1950), 1-25.doi: 10.2307/1969494. |
[7] |
F. Mautner, Unitary representations of locally compact groups. II, Ann. of Math. (2), 52 (1950), 528-556.doi: 10.2307/1969431. |
[8] |
D. Mieczkowski, The first cohomology of parabolic actions for some higher-rank abelian groups and representation theory, Journal of Modern Dynamics, 1 (2007), 61-92.doi: 10.3934/jmd.2007.1.61. |
[9] |
D. Kleinbock and G. Margulis, Logarithm laws for flows on homogeneous spaces, Invent. Math., 138 (1999), 451-494.doi: 10.1007/s002220050350. |
[10] |
D. Kelmer and P. Sarnak, Strong spectral gaps for compact quotients of products of $PSL(2, \mathbbR)$, J. Eur. Math. Soc., 11 (2009), 283-313.doi: 10.4171/JEMS/151. |
[11] |
F. Ramirez, Cocycles over higher-rank abelian actions on quotients of semisimple Lie groups, J. Mod. Dyn., 3 (2009), 335-357.doi: 10.3934/jmd.2009.3.335. |
[12] |
J. Tanis, The cohomological equation and invariant distributions for horocycle maps, Ergodic Theory and Dynamical systems, 34 (2014), 299-340.doi: 10.1017/etds.2012.125. |