December  2014, 34(12): 5247-5269. doi: 10.3934/dcds.2014.34.5247

Stochastic adding machine and $2$-dimensional Julia sets

1. 

UNESP - Departamento de Matemática do, Instituto de Biociências, Letras e Ciências, Exatas de São José do Rio Preto, Brazil

2. 

Université de Picardie Jules Verne, Laboratoire Amiénois de Mathématiques Fondamentales et Appliquées, CNRS - UMR 7352, France

Received  June 2013 Revised  March 2014 Published  June 2014

In this work we define a stochastic adding machine associated to a quadratic base $(F_n)_{n \geq 0}$ formed by recurrent sequences of order 2. We obtain a Markov chain with states in $\mathbb{Z}^+$ and we prove that the spectrum of the transition operator associated to this Markov chain is connected to the filled Julia sets for a class of endomorphisms in $\mathbb{C}^2$ of which we study topological properties.
Citation: Ali Messaoudi, Rafael Asmat Uceda. Stochastic adding machine and $2$-dimensional Julia sets. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5247-5269. doi: 10.3934/dcds.2014.34.5247
References:
[1]

E. H. El Abdalaoui and A. Messaoudi, On the spectrum of stochastic perturbations of the shift map and Julia sets,, Fundamenta Mathematicae, 218 (2012), 47.  doi: 10.4064/fm218-1-3.  Google Scholar

[2]

El Abdalaoui, S. Bonnot, A. Messaoudi and O. Sester, On the Fibonacci Complex Dynamical Systems,, , (2013).   Google Scholar

[3]

E. Bedford and J. Smillie, John Polynomial diffeomorphisms of $\mathbbC^2$ VI. Connectivity of J,, Ann. of Math. (2), 148 (1998), 695.  doi: 10.2307/121006.  Google Scholar

[4]

R. L. Devaney, An Introduction to Chaothic Dynamical Systems,, ABP, (2003).   Google Scholar

[5]

S. Eilenberg, Automata, Languages, and Machines,, Volume 1, (1974).   Google Scholar

[6]

J. E. Fornaess and N. Sibony, Fatou and Julia sets for entire mappings in $\mathbbC^k$,, Math. Ann., 311 (1998), 27.  doi: 10.1007/s002080050174.  Google Scholar

[7]

A. S. Fraenkel, Systems of numeration,, Amer. Math. Monthly, 92 (1985), 105.  doi: 10.2307/2322638.  Google Scholar

[8]

C. Frougny, Representation of numbers and finite automata,, Math. Systems Theory, 25 (1992), 37.  doi: 10.1007/BF01368783.  Google Scholar

[9]

P. R. Killeen and T. J. Taylor, A stochastic adding machine and complex dynamics,, Nonlinearity, 13 (2000), 1889.  doi: 10.1088/0951-7715/13/6/302.  Google Scholar

[10]

S. Morosawa, Y. Nishimura, M. Taniguchi and T. Ueda, Holomorphic Dynamics,, Cambridge University Press, (2000).   Google Scholar

[11]

J. Milnor, Dynamics in One Complex Variable,, Princeton University Press, (2006).   Google Scholar

[12]

A. Messaoudi and D. Smania, Eigenvalues of Fibonacci stochastic adding machine,, Stoch. Dyn., 10 (2010), 291.  doi: 10.1142/S0219493710002966.  Google Scholar

[13]

A. Messaoudi, O. Sester and G. Valle, Spectrum of stochastic adding machine and fibred Julia sets,, Stochastic and Dynamics, 13 (2013).  doi: 10.1142/S0219493712500219.  Google Scholar

[14]

R. A. Uceda, Máquina de Somar, Conjuntos de Julia e Fractais de Rauzy,, PhD Thesis, (2011).   Google Scholar

[15]

K. Yoshida, Functional Analysis,, Springer Verlag, (1980).   Google Scholar

show all references

References:
[1]

E. H. El Abdalaoui and A. Messaoudi, On the spectrum of stochastic perturbations of the shift map and Julia sets,, Fundamenta Mathematicae, 218 (2012), 47.  doi: 10.4064/fm218-1-3.  Google Scholar

[2]

El Abdalaoui, S. Bonnot, A. Messaoudi and O. Sester, On the Fibonacci Complex Dynamical Systems,, , (2013).   Google Scholar

[3]

E. Bedford and J. Smillie, John Polynomial diffeomorphisms of $\mathbbC^2$ VI. Connectivity of J,, Ann. of Math. (2), 148 (1998), 695.  doi: 10.2307/121006.  Google Scholar

[4]

R. L. Devaney, An Introduction to Chaothic Dynamical Systems,, ABP, (2003).   Google Scholar

[5]

S. Eilenberg, Automata, Languages, and Machines,, Volume 1, (1974).   Google Scholar

[6]

J. E. Fornaess and N. Sibony, Fatou and Julia sets for entire mappings in $\mathbbC^k$,, Math. Ann., 311 (1998), 27.  doi: 10.1007/s002080050174.  Google Scholar

[7]

A. S. Fraenkel, Systems of numeration,, Amer. Math. Monthly, 92 (1985), 105.  doi: 10.2307/2322638.  Google Scholar

[8]

C. Frougny, Representation of numbers and finite automata,, Math. Systems Theory, 25 (1992), 37.  doi: 10.1007/BF01368783.  Google Scholar

[9]

P. R. Killeen and T. J. Taylor, A stochastic adding machine and complex dynamics,, Nonlinearity, 13 (2000), 1889.  doi: 10.1088/0951-7715/13/6/302.  Google Scholar

[10]

S. Morosawa, Y. Nishimura, M. Taniguchi and T. Ueda, Holomorphic Dynamics,, Cambridge University Press, (2000).   Google Scholar

[11]

J. Milnor, Dynamics in One Complex Variable,, Princeton University Press, (2006).   Google Scholar

[12]

A. Messaoudi and D. Smania, Eigenvalues of Fibonacci stochastic adding machine,, Stoch. Dyn., 10 (2010), 291.  doi: 10.1142/S0219493710002966.  Google Scholar

[13]

A. Messaoudi, O. Sester and G. Valle, Spectrum of stochastic adding machine and fibred Julia sets,, Stochastic and Dynamics, 13 (2013).  doi: 10.1142/S0219493712500219.  Google Scholar

[14]

R. A. Uceda, Máquina de Somar, Conjuntos de Julia e Fractais de Rauzy,, PhD Thesis, (2011).   Google Scholar

[15]

K. Yoshida, Functional Analysis,, Springer Verlag, (1980).   Google Scholar

[1]

Evan Greif, Daniel Kaplan, Robert S. Strichartz, Samuel C. Wiese. Spectrum of the Laplacian on regular polyhedra. Communications on Pure & Applied Analysis, 2021, 20 (1) : 193-214. doi: 10.3934/cpaa.2020263

[2]

Riccarda Rossi, Ulisse Stefanelli, Marita Thomas. Rate-independent evolution of sets. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 89-119. doi: 10.3934/dcdss.2020304

[3]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[4]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[5]

Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005

[6]

Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020350

[7]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[8]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[9]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[10]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[11]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[12]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[13]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[14]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[15]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[16]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[17]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[18]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[19]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[20]

Martin Heida, Stefan Neukamm, Mario Varga. Stochastic homogenization of $ \Lambda $-convex gradient flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 427-453. doi: 10.3934/dcdss.2020328

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]