December  2014, 34(12): 5299-5323. doi: 10.3934/dcds.2014.34.5299

Segregated peak solutions of coupled Schrödinger systems with Neumann boundary conditions

1. 

School of Mathematical Sciences, Beijing Normal University, Laboratory of Mathematics and Complex Systems, Ministry of Education, Beijing 100875

Received  July 2013 Revised  May 2014 Published  June 2014

We consider the following two coupled Schrödinger systems in a bounded domain $\Omega\subset \mathbb{R}^N(N=2,3)$ with Neumann boundary conditions $$\left\{ \begin{array}{ll} -\epsilon^2 \triangle u + u = \mu_1 u^3+ \beta u v^2,\\ -\epsilon^2 \triangle v + v =\mu_2 v^3+ \beta u^2 v,\\ u>0,    v>0, \\ \partial u/\partial n = 0,\partial v/\partial n = 0, \mbox{on } \partial \Omega. \end{array}\right. $$ Suppose the mean curvature $H(P)$ of the boundary $\partial \Omega$ admits several local maximums( or local minimums), we obtain the existence of segregated solutions $(u_\epsilon,v_\epsilon)$ to the above system such that both of $u_\epsilon$ and $v_\epsilon$ admit more than one local maximums, furthermore as $\epsilon$ goes to zero, the maximum points of $u_\epsilon$ and $v_\epsilon$ concentrate at different local maximum points( or local minimum points) of the mean curvature $H(P)$ respectively.
Citation: Zhongwei Tang. Segregated peak solutions of coupled Schrödinger systems with Neumann boundary conditions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5299-5323. doi: 10.3934/dcds.2014.34.5299
References:
[1]

L. A. Maia, E. Nontefusco and B. Pellacci, Positive solutions for a weakly coupled nonlinear Schrödinger systems,, J. Diff. Equat., 229 (2006), 743.  doi: 10.1016/j.jde.2006.07.002.  Google Scholar

[2]

T. Bartsch, N. Dancer and Z. Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system,, Calc. Var., 37 (2010), 345.  doi: 10.1007/s00526-009-0265-y.  Google Scholar

[3]

T. Bartsch, Z. Q. Wang and J. Wei, Bound states for a coupled Schrödinger systems,, J. Fixed Point Theory Appl., 2 (2007), 353.  doi: 10.1007/s11784-007-0033-6.  Google Scholar

[4]

D. Cao and T. Küpper, On the existence of multipeaked solutions to a semilinear Neumann Problem,, Duke Math. J., 97 (1999), 261.  doi: 10.1215/S0012-7094-99-09712-0.  Google Scholar

[5]

N. Dancer and J. Wei, Spike solutions in coupled nonlinear Schrödinger equations with attractive interaction,, Tran. Amer. Math. Soci., 361 (2009), 1189.  doi: 10.1090/S0002-9947-08-04735-1.  Google Scholar

[6]

S. Peng and Z. Q. Wang, Segregated and synchronized vector solutions for nonlinear Schrödinger systems,, Arch. Ration. Mech. Anal., 208 (2013), 305.  doi: 10.1007/s00205-012-0598-0.  Google Scholar

[7]

M. Lucia and Z. Tang, Multi-bump bound states for a system of nonlinear Schrödinger equations,, J. Differential Equations, 252 (2012), 3630.  doi: 10.1016/j.jde.2011.11.017.  Google Scholar

[8]

W. M. Ni and I. Takagi, Locating the peaks of the least energy solutions to a semilinear Neumann problem,, Duke Math. J., 70 (1993), 247.  doi: 10.1215/S0012-7094-93-07004-4.  Google Scholar

[9]

B. D. Esry, C. H. Greene, J. P. Burke Jr and J. L. Bohn, Hartee-Fock theory for double condensates,, Phys. Rev. Lett., 78 (1997), 3594.   Google Scholar

[10]

C. Gui, J. Wei and M. Winter, Multiple boundary peak solutions for some singularly perturbed Neumann problems,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 47.  doi: 10.1016/S0294-1449(99)00104-3.  Google Scholar

[11]

T. Lin and J. Wei, Spike in two coupled of nonlinear Schrödinger equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 403.  doi: 10.1016/j.anihpc.2004.03.004.  Google Scholar

[12]

T. Lin and J. Wei, Ground state of N coupled nonlinear Schrödinger equations in $\mathbbR^n,n\leq 3$,, Comm. Math. Phys., 255 (2005), 629.  doi: 10.1007/s00220-005-1313-x.  Google Scholar

[13]

T. Lin and J. Wei, Spike in two-component systems of nonlinear Schrödinger equations with trapping potentials,, J. Diff. Equat., 229 (2006), 538.  doi: 10.1016/j.jde.2005.12.011.  Google Scholar

[14]

B. Sirakov, Least energy solitary waves for a system of nonliear Schrödinger equations in $\mathbbR^n$,, Commun. Math. Phys., 271 (2007), 199.  doi: 10.1007/s00220-006-0179-x.  Google Scholar

[15]

Z. Tang, Spike-layer solutions to singularly perturbed semilinear systems of coupled schrödinger equations,, J. Math. Anal. Appl., 377 (2011), 336.  doi: 10.1016/j.jmaa.2010.11.001.  Google Scholar

[16]

Z. Tang, Multi-peak solutions to a coupled schrödinger systems with neumann boundary condition,, J. Math. Anal. Appl., 409 (2014), 684.  doi: 10.1016/j.jmaa.2013.07.053.  Google Scholar

[17]

J. Wei and T. Weth, Nonradial symmetric bound states for a system of two coupled Schrödinger equations,, Rend. Lincei Mat. Appl., 18 (2007), 279.  doi: 10.4171/RLM/495.  Google Scholar

[18]

J. Wei and T. Weth, Radial solutions and phase sparation in a system of two coupled Schrödinger equations,, Arch. Rat. Mech. Anal., 190 (2008), 83.  doi: 10.1007/s00205-008-0121-9.  Google Scholar

[19]

J. Wei and M. Winter, Stationary solutions for the Cahn-Hilliard equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 459.  doi: 10.1016/S0294-1449(98)80031-0.  Google Scholar

[20]

W. Yao and J. Wei, Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations,, Commun. Pure. Appl. Anal., 11 (2012), 1003.  doi: 10.3934/cpaa.2012.11.1003.  Google Scholar

show all references

References:
[1]

L. A. Maia, E. Nontefusco and B. Pellacci, Positive solutions for a weakly coupled nonlinear Schrödinger systems,, J. Diff. Equat., 229 (2006), 743.  doi: 10.1016/j.jde.2006.07.002.  Google Scholar

[2]

T. Bartsch, N. Dancer and Z. Q. Wang, A Liouville theorem, a-priori bounds, and bifurcating branches of positive solutions for a nonlinear elliptic system,, Calc. Var., 37 (2010), 345.  doi: 10.1007/s00526-009-0265-y.  Google Scholar

[3]

T. Bartsch, Z. Q. Wang and J. Wei, Bound states for a coupled Schrödinger systems,, J. Fixed Point Theory Appl., 2 (2007), 353.  doi: 10.1007/s11784-007-0033-6.  Google Scholar

[4]

D. Cao and T. Küpper, On the existence of multipeaked solutions to a semilinear Neumann Problem,, Duke Math. J., 97 (1999), 261.  doi: 10.1215/S0012-7094-99-09712-0.  Google Scholar

[5]

N. Dancer and J. Wei, Spike solutions in coupled nonlinear Schrödinger equations with attractive interaction,, Tran. Amer. Math. Soci., 361 (2009), 1189.  doi: 10.1090/S0002-9947-08-04735-1.  Google Scholar

[6]

S. Peng and Z. Q. Wang, Segregated and synchronized vector solutions for nonlinear Schrödinger systems,, Arch. Ration. Mech. Anal., 208 (2013), 305.  doi: 10.1007/s00205-012-0598-0.  Google Scholar

[7]

M. Lucia and Z. Tang, Multi-bump bound states for a system of nonlinear Schrödinger equations,, J. Differential Equations, 252 (2012), 3630.  doi: 10.1016/j.jde.2011.11.017.  Google Scholar

[8]

W. M. Ni and I. Takagi, Locating the peaks of the least energy solutions to a semilinear Neumann problem,, Duke Math. J., 70 (1993), 247.  doi: 10.1215/S0012-7094-93-07004-4.  Google Scholar

[9]

B. D. Esry, C. H. Greene, J. P. Burke Jr and J. L. Bohn, Hartee-Fock theory for double condensates,, Phys. Rev. Lett., 78 (1997), 3594.   Google Scholar

[10]

C. Gui, J. Wei and M. Winter, Multiple boundary peak solutions for some singularly perturbed Neumann problems,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 17 (2000), 47.  doi: 10.1016/S0294-1449(99)00104-3.  Google Scholar

[11]

T. Lin and J. Wei, Spike in two coupled of nonlinear Schrödinger equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22 (2005), 403.  doi: 10.1016/j.anihpc.2004.03.004.  Google Scholar

[12]

T. Lin and J. Wei, Ground state of N coupled nonlinear Schrödinger equations in $\mathbbR^n,n\leq 3$,, Comm. Math. Phys., 255 (2005), 629.  doi: 10.1007/s00220-005-1313-x.  Google Scholar

[13]

T. Lin and J. Wei, Spike in two-component systems of nonlinear Schrödinger equations with trapping potentials,, J. Diff. Equat., 229 (2006), 538.  doi: 10.1016/j.jde.2005.12.011.  Google Scholar

[14]

B. Sirakov, Least energy solitary waves for a system of nonliear Schrödinger equations in $\mathbbR^n$,, Commun. Math. Phys., 271 (2007), 199.  doi: 10.1007/s00220-006-0179-x.  Google Scholar

[15]

Z. Tang, Spike-layer solutions to singularly perturbed semilinear systems of coupled schrödinger equations,, J. Math. Anal. Appl., 377 (2011), 336.  doi: 10.1016/j.jmaa.2010.11.001.  Google Scholar

[16]

Z. Tang, Multi-peak solutions to a coupled schrödinger systems with neumann boundary condition,, J. Math. Anal. Appl., 409 (2014), 684.  doi: 10.1016/j.jmaa.2013.07.053.  Google Scholar

[17]

J. Wei and T. Weth, Nonradial symmetric bound states for a system of two coupled Schrödinger equations,, Rend. Lincei Mat. Appl., 18 (2007), 279.  doi: 10.4171/RLM/495.  Google Scholar

[18]

J. Wei and T. Weth, Radial solutions and phase sparation in a system of two coupled Schrödinger equations,, Arch. Rat. Mech. Anal., 190 (2008), 83.  doi: 10.1007/s00205-008-0121-9.  Google Scholar

[19]

J. Wei and M. Winter, Stationary solutions for the Cahn-Hilliard equations,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 15 (1998), 459.  doi: 10.1016/S0294-1449(98)80031-0.  Google Scholar

[20]

W. Yao and J. Wei, Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations,, Commun. Pure. Appl. Anal., 11 (2012), 1003.  doi: 10.3934/cpaa.2012.11.1003.  Google Scholar

[1]

Lushun Wang, Minbo Yang, Yu Zheng. Infinitely many segregated solutions for coupled nonlinear Schrödinger systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 6069-6102. doi: 10.3934/dcds.2019265

[2]

Jing Yang. Segregated vector Solutions for nonlinear Schrödinger systems with electromagnetic potentials. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1785-1805. doi: 10.3934/cpaa.2017087

[3]

Hongyu Ye. Positive solutions for critically coupled Schrödinger systems with attractive interactions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 485-507. doi: 10.3934/dcds.2018022

[4]

Jiabao Su, Rushun Tian, Zhi-Qiang Wang. Positive solutions of doubly coupled multicomponent nonlinear Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 2143-2161. doi: 10.3934/dcdss.2019138

[5]

Chuangye Liu, Zhi-Qiang Wang. Synchronization of positive solutions for coupled Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2795-2808. doi: 10.3934/dcds.2018118

[6]

Guowei Dai, Rushun Tian, Zhitao Zhang. Global bifurcations and a priori bounds of positive solutions for coupled nonlinear Schrödinger Systems. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1905-1927. doi: 10.3934/dcdss.2019125

[7]

Yohei Sato. Sign-changing multi-peak solutions for nonlinear Schrödinger equations with critical frequency. Communications on Pure & Applied Analysis, 2008, 7 (4) : 883-903. doi: 10.3934/cpaa.2008.7.883

[8]

Alessio Pomponio, Simone Secchi. A note on coupled nonlinear Schrödinger systems under the effect of general nonlinearities. Communications on Pure & Applied Analysis, 2010, 9 (3) : 741-750. doi: 10.3934/cpaa.2010.9.741

[9]

Shuangjie Peng, Huirong Pi. Spike vector solutions for some coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2205-2227. doi: 10.3934/dcds.2016.36.2205

[10]

Zhanping Liang, Yuanmin Song, Fuyi Li. Positive ground state solutions of a quadratically coupled schrödinger system. Communications on Pure & Applied Analysis, 2017, 16 (3) : 999-1012. doi: 10.3934/cpaa.2017048

[11]

Juncheng Wei, Wei Yao. Uniqueness of positive solutions to some coupled nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1003-1011. doi: 10.3934/cpaa.2012.11.1003

[12]

Seunghyeok Kim. On vector solutions for coupled nonlinear Schrödinger equations with critical exponents. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1259-1277. doi: 10.3934/cpaa.2013.12.1259

[13]

Tai-Chia Lin, Tsung-Fang Wu. Existence and multiplicity of positive solutions for two coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2911-2938. doi: 10.3934/dcds.2013.33.2911

[14]

Jianqing Chen. A variational argument to finding global solutions of a quasilinear Schrödinger equation. Communications on Pure & Applied Analysis, 2008, 7 (1) : 83-88. doi: 10.3934/cpaa.2008.7.83

[15]

Fengshuang Gao, Yuxia Guo. Multiple solutions for a nonlinear Schrödinger systems. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1181-1204. doi: 10.3934/cpaa.2020055

[16]

Jean-François Coulombel, Frédéric Lagoutière. The Neumann numerical boundary condition for transport equations. Kinetic & Related Models, 2020, 13 (1) : 1-32. doi: 10.3934/krm.2020001

[17]

Minoru Murai, Kunimochi Sakamoto, Shoji Yotsutani. Representation formula for traveling waves to a derivative nonlinear Schrödinger equation with the periodic boundary condition. Conference Publications, 2015, 2015 (special) : 878-900. doi: 10.3934/proc.2015.0878

[18]

Chao Ji. Ground state solutions of fractional Schrödinger equations with potentials and weak monotonicity condition on the nonlinear term. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6071-6089. doi: 10.3934/dcdsb.2019131

[19]

Yang Wang. The maximal number of interior peak solutions concentrating on hyperplanes for a singularly perturbed Neumann problem. Communications on Pure & Applied Analysis, 2011, 10 (2) : 731-744. doi: 10.3934/cpaa.2011.10.731

[20]

Youyan Wan, Jinggang Tan. The existence of nontrivial solutions to Chern-Simons-Schrödinger systems. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2765-2786. doi: 10.3934/dcds.2017119

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]