\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Optimal parameter-dependent bounds for Kuramoto-Sivashinsky-type equations

Abstract / Introduction Related Papers Cited by
  • We derive a priori estimates on the absorbing ball in $L^2$ for the stabilized and destabilized Kuramoto-Sivashinsky (KS) equations, and for a sixth-order analog, the Nikolaevskiy equation, and in each case obtain bounds whose parameter dependence is demonstrably optimal. This is done by extending a Lyapunov function construction developed by Bronski and Gambill (Nonlinearity 19 , 2023--2039 (2006)) to take into account the dependence on both large and small parameters in the system. In the case of the destabilized KS equation, the rigorous bound lim $\sup_{t \to \infty}|| u || \leq K \alpha L^{3/2}$ is sharp in both the large parameter $\alpha$ and the system size $L$. We also apply our methods to improve previous estimates on a nonlocal variant of the KS equation.
    Mathematics Subject Classification: Primary: 35B45, 35K30; Secondary: 37L30.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    I. Bena, C. Misbah and A. Valance, Nonlinear evolution of a terrace edge during step-flow growth, Phys. Rev. B, 47 (1993), 7408-7419.doi: 10.1103/PhysRevB.47.7408.

    [2]

    I. A. Beresnev and V. N. Nikolaevskiy, A model for nonlinear seismic-waves in a medium with instability, Physica D, 66 (1993), 1-6.doi: 10.1016/0167-2789(93)90217-O.

    [3]

    C.-M. Brauner, M. Frankel, J. Hulshof and V. Roytburd, Stability and attractors for the quasi-steady equation of cellular flames, Interfaces Free Bound., 8 (2006), 301-316.doi: 10.4171/IFB/145.

    [4]

    J. C. Bronski and R. C. Fetecau, An alternative energy bound derivation for a generalized Hasegawa-Mima equation, Nonlinear Anal.: Real World Appl., 13 (2012), 1362-1368.doi: 10.1016/j.nonrwa.2011.10.012.

    [5]

    J. C. Bronski, R. C. Fetecau and T. N. Gambill, A note on a non-local Kuramoto-Sivashinsky equation, Discrete Contin. Dyn. Syst. Ser. A, 18 (2007), 701-707.doi: 10.3934/dcds.2007.18.701.

    [6]

    J. C. Bronski and T. N. Gambill, Uncertainty estimates and $L_2$ bounds for the Kuramoto-Sivashinsky equation, Nonlinearity, 19 (2006), 2023-2039.doi: 10.1088/0951-7715/19/9/002.

    [7]

    P. Brunet, Stabilized Kuramoto-Sivashinsky equation: A useful model for secondary instabilities and related dynamics of experimental one-dimensional cellular flows, Phys. Rev. E, 76 (2007), 017204.doi: 10.1103/PhysRevE.76.017204.

    [8]

    H. Chaté and P. Manneville, Transition to turbulence via spatiotemporal intermittency, Phys. Rev. Lett., 58 (1987), 112-115.doi: 10.1103/PhysRevLett.58.112.

    [9]

    P. Collet, J.-P. Eckmann, H. Epstein and J. Stubbe, A global attracting set for the Kuramoto-Sivashinsky equation, Commun. Math. Phys., 152 (1993), 203-214.doi: 10.1007/BF02097064.

    [10]

    P. Collet, J.-P. Eckmann, H. Epstein and J. Stubbe, Analyticity for the Kuramoto-Sivashinsky equation, Physica D, 67 (1993), 321-326.doi: 10.1016/0167-2789(93)90168-Z.

    [11]

    S. M. Cox and P. C. Matthews, Pattern formation in the damped Nikolaevskiy equation, Phys. Rev. E, 76 (2007), 056202, 11pp.doi: 10.1103/PhysRevE.76.056202.

    [12]

    A. Demirkaya and M. Stanislavova, Long time behavior for radially symmetric solutions of the Kuramoto-Sivashinsky equation, Dynamics of PDE, 7 (2010), 161-173.doi: 10.4310/DPDE.2010.v7.n2.a2.

    [13]

    J. Duan and V. J. Ervin, Dynamics of a nonlocal Kuramoto-Sivashinsky equation, J. Differential Equations, 143 (1998), 243-266.doi: 10.1006/jdeq.1997.3371.

    [14]

    K. R. Elder, J. D. Gunton and N. Goldenfeld, Transition to spatiotemporal chaos in the damped Kuramoto-Sivashinsky equation, Phys. Rev. E, 56 (1997), 1631-1634.doi: 10.1103/PhysRevE.56.1631.

    [15]

    C. Foias, B. Nicolaenko, G. R. Sell and R. Temam, Inertial manifolds for the Kuramoto-Sivashinsky equation and an estimate of their lowest dimension, J. Math. Pures Appl., 67 (1988), 197-226.

    [16]

    M. Frankel and V. Roytburd, Stability for a class of nonlinear pseudo-differential equations, Appl. Math. Lett., 21 (2008), 425-430.doi: 10.1016/j.aml.2007.03.023.

    [17]

    L. Giacomelli and F. Otto, New bounds for the Kuramoto-Sivashinsky equation, Commun. Pure Appl. Math., 58 (2005), 297-318.doi: 10.1002/cpa.20031.

    [18]

    J. Goodman, Stability of the Kuramoto-Sivashinsky and related systems, Commun. Pure Appl. Math., 47 (1994), 293-306.doi: 10.1002/cpa.3160470304.

    [19]

    R. Grauer, An energy estimate for a perturbed Hasegawa-Mima equation, Nonlinearity, 11 (1998), 659-666.doi: 10.1088/0951-7715/11/3/014.

    [20]

    D. Hilhorst, L. A. Peletier, A. I. Rotariu and G. Sivashinsky, Global attractor and inertial sets for a nonlocal Kuramoto-Sivashinsky equation, Discrete Contin. Dynam. Systems, 10 (2004), 557-580.doi: 10.3934/dcds.2004.10.557.

    [21]

    G. M. Homsy, Model equations for wavy viscous film flow, Lect. Appl. Math., 15 (1974), 191-194.

    [22]

    J. M. Hyman, B. Nicolaenko and S. Zaleski, Order and complexity in the Kuramoto-Sivashinsky model of weakly turbulent interfaces, Physica D, 23 (1986), 265-292.doi: 10.1016/0167-2789(86)90136-3.

    [23]

    Y. S. Il'yashenko, Global analysis of the phase portrait for the Kuramoto-Sivashinsky equation, J. Dyn. Diff. Eq., 4 (1992), 585-615.doi: 10.1007/BF01048261.

    [24]

    M. S. Jolly, R. Rosa and R. Temam, Evaluating the dimension of an inertial manifold for the Kuramoto-Sivashinsky equation, Adv. Differential Equations, 5 (2000), 31-66.

    [25]

    I. G. Kevrekidis, B. Nicolaenko and J. C. Scovel, Back in the saddle again: A computer assisted study of the Kuramoto-Sivashinsky equation, SIAM J. Appl. Math., 50 (1990), 760-790.doi: 10.1137/0150045.

    [26]

    Y. Kuramoto and T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Prog. Theor. Phys., 55 (1976), 356-369.doi: 10.1143/PTP.55.356.

    [27]

    R. E. LaQuey, S. M. Mahajan, P. H. Rutherford and W. M. Tang, Nonlinear saturation of the trapped-ion mode, Phys. Rev. Lett., 34 (1975), 391-394.doi: 10.1103/PhysRevLett.34.391.

    [28]

    P. Manneville, Liapounov exponents for the Kuramoto-Sivashinsky model, in Macroscopic Modelling of Turbulent Flows, (eds. U. Frisch, J. Keller, G. Papanicolaou and O. Pironneau), vol. 230 of Lecture Notes in Physics, Springer-Verlag, Berlin Heidelberg, (1985), 319-326.doi: 10.1007/3-540-15644-5_26.

    [29]

    P. C. Matthews and S. M. Cox, One-dimensional pattern formation with Galilean invariance near a stationary bifurcation, Phys. Rev. E, 62 (2000), R1473-R1476.doi: 10.1103/PhysRevE.62.R1473.

    [30]

    D. Michelson, Steady solutions of the Kuramoto-Sivashinsky equation, Physica D, 19 (1986), 89-111.doi: 10.1016/0167-2789(86)90055-2.

    [31]

    C. Misbah and A. Valance, Secondary instabilities in the stabilized Kuramoto-Sivashinsky equation, Phys. Rev. E, 49 (1994), 166-183.doi: 10.1103/PhysRevE.49.166.

    [32]

    L. Molinet, Local dissipativity in $l^2$ for the Kuramoto-Sivashinsky equation in spatial dimension 2, J. Dyn. Diff. Eqns., 12 (2000), 533-556.doi: 10.1023/A:1026459527446.

    [33]

    B. Nicolaenko, B. Scheurer and R. Temam, Some global dynamical properties of the Kuramoto-Sivashinsky equations: Nonlinear stability and attractors, Physica D, 16 (1985), 155-183.doi: 10.1016/0167-2789(85)90056-9.

    [34]

    A. Novick-Cohen, Interfacial instabilities in directional solidification of dilute binary alloys: The Kuramoto-Sivashinsky equation, Physica D, 26 (1987), 403-410.doi: 10.1016/0167-2789(87)90240-5.

    [35]

    F. Otto, Optimal bounds on the Kuramoto-Sivashinsky equation, J. Funct. Anal., 257 (2009), 2188-2245.doi: 10.1016/j.jfa.2009.01.034.

    [36]

    F. C. Pinto, Nonlinear stability and dynamical properties for a Kuramoto-Sivashinsky equation in space dimension two, Discrete Contin. Dynam. Systems, 5 (1999), 117-136.doi: 10.3934/dcds.1999.5.117.

    [37]

    Y. Pomeau and P. Manneville, Wavelength selection in cellular flows, Phys. Lett. A, 75 (1980), 296-298.doi: 10.1016/0375-9601(80)90568-X.

    [38]

    Y. Pomeau and S. Zaleski, Wavelength selection in one-dimensional cellular structures, J. Physique, 42 (1981), 515-528.doi: 10.1051/jphys:01981004204051500.

    [39]

    J. D. M. Rademacher and R. W. Wittenberg, Viscous shocks in the destabilized Kuramoto-Sivashinsky equation, ASME J. Comput. Nonlinear Dynamics, 1 (2006), 336-347.doi: 10.1115/1.2338656.

    [40]

    G. I. Sivashinsky, Nonlinear analysis of hydrodynamic instability in laminar flames-I. Derivation of basic equations, Acta Astron., 4 (1977), 1177-1206.doi: 10.1016/0094-5765(77)90096-0.

    [41]

    M. Stanislavova and A. Stefanov, Asymptotic estimates and stability analysis of Kuramoto-Sivashinsky type models, J. Evol. Equ., 11 (2011), 605-635, Erratum, J. Evol. Equ. 11 (2011), 637-639.doi: 10.1007/s00028-011-0103-5.

    [42]

    D. Tanaka, Chemical turbulence equivalent to Nikolavskii turbulence, Phys. Rev. E, 70 (2004), 015202(R).doi: 10.1103/PhysRevE.70.015202.

    [43]

    D. Tanaka, Critical exponents of Nikolaevskii turbulence, Phys. Rev. E, 71 (2005), 025203(R).doi: 10.1103/PhysRevE.71.025203.

    [44]

    R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 2nd edition, no. 68 in Applied Mathematical Sciences, Springer-Verlag, New York, 1997.doi: 10.1007/978-1-4612-0645-3.

    [45]

    M. I. Tribel'skiĭ, Short-wavelength instability and transition to chaos in distributed systems with additional symmetry, Usp. Fiz. Nauk, 40 (1997), 159-190.doi: 10.1070/PU1997v040n02ABEH000193.

    [46]

    M. I. Tribelsky and K. Tsuboi, New scenario for transition to turbulence?, Phys. Rev. Lett., 76 (1996), 1631-1634.doi: 10.1103/PhysRevLett.76.1631.

    [47]

    M. I. Tribelsky and M. G. Velarde, Short-wavelength instability in systems with slow long-wavelength dynamics, Phys. Rev. E, 54 (1996), 4973-4981.doi: 10.1103/PhysRevE.54.4973.

    [48]

    D. Tseliuko and D. T. Papageorgiou, A global attracting set for nonlocal Kuramoto-Sivashinsky equations arising in interfacial electrohydrodynamics, Euro. Jnl of Applied Mathematics, 17 (2006), 677-703.doi: 10.1017/S0956792506006760.

    [49]

    R. W. Wittenberg, Dissipativity, analyticity and viscous shocks in the (de)stabilized Kuramoto-Sivashinsky equation, Phys. Lett. A, 300 (2002), 407-416.doi: 10.1016/S0375-9601(02)00861-7.

    [50]

    R. W. Wittenberg and P. Holmes, Scale and space localization in the Kuramoto-Sivashinsky equation, Chaos, 9 (1999), 452-465.doi: 10.1063/1.166419.

    [51]

    R. W. Wittenberg and K.-F. Poon, Anomalous scaling on a spatiotemporally chaotic attractor, Phys. Rev. E, 79 (2009), 056225.doi: 10.1103/PhysRevE.79.056225.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(102) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return