\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global existence of small-norm solutions in the reduced Ostrovsky equation

Abstract Related Papers Cited by
  • We use a novel transformation of the reduced Ostrovsky equation to the integrable Tzitzéica equation and prove global existence of small-norm solutions in Sobolev space $H^3(\mathbb{R})$. This scenario is an alternative to finite-time wave breaking of large-norm solutions of the reduced Ostrovsky equation. We also discuss a sharp sufficient condition for the finite-time wave breaking.
    Mathematics Subject Classification: Primary: 35A01; Secondary: 35Q35.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. R. Aguirre, T. R. Araujo, J. F. Gomes and A. H. Zimerman, Type-II Bäcklund transformations via gauge transformations, J. High Energy Phys., (2011), 056, 18 pp.

    [2]

    J. P. Boyd, Microbreaking and polycnoidal waves in the Ostrovsky-Hunter equation, Physics Letters A, 338 (2005), 36-43.doi: 10.1016/j.physleta.2005.02.017.

    [3]

    J. C. Brunelli and S. Sakovich, Hamiltonian structures for the Ostrovsky-Vakhnenko equation, Comm. Nonlin. Sci. Numer. Simul., 18 (2013), 56-62.doi: 10.1016/j.cnsns.2012.06.018.

    [4]

    A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Annales de l'Institute Fourier (Grenoble), 50 (2000), 321-362.doi: 10.5802/aif.1757.

    [5]

    A. Constantin, On the scattering problem for the Camassa-Holm equation, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 953-970.doi: 10.1098/rspa.2000.0701.

    [6]

    R. Iório and D. Pilod, Well-posedness for Hirota-Satsuma's equation, Diff. Integr. Eqs., 21 (2008), 1177-1192.

    [7]

    A. N. W. Hone and J. P. Wang, Prolongation algebras and Hamiltonian operators for peakon equations, Inverse Problems, 19 (2003), 129-145.doi: 10.1088/0266-5611/19/1/307.

    [8]

    J. Hunter, Numerical solutions of some nonlinear dispersive wave equations, in "Computational Solution of Nonlinear Systems of Equations" (Fort Collins, CO, 1988), Lectures in Appl. Math., 26, Amer. Math. Soc., Providence, RI, (1990), 301-316.

    [9]

    R. H. J. Grimshaw, K. Helfrich and E. R. Johnson, The reduced Ostrovsky equation: Integrability and breaking, Stud. Appl. Math., 129 (2013), 414-436.doi: 10.1111/j.1467-9590.2012.00560.x.

    [10]

    G. Gui and Y. Liu, On the Cauchy problem for the Ostrovsky equation with positive dispersion, Comm. Part. Diff. Eqs., 32 (2007), 1895-1916.doi: 10.1080/03605300600987314.

    [11]

    R. Kraenkel, H. Leblond and M. A. Manna, An integrable evolution equation for surface waves in deep water, (2011), arXiv:1101.5773.

    [12]

    F. Linares and A. Milanés, Local and global well-posedness for the Ostrovsky equation, J. Diff. Eqs., 222 (2006), 325-340.doi: 10.1016/j.jde.2005.07.023.

    [13]

    Y. Liu, D. Pelinovsky and A. Sakovich, Wave breaking in the short-pulse equation, Dynamics of PDE, 6 (2009), 291-310.

    [14]

    Y. Liu, D. Pelinovsky and A. Sakovich, Wave breaking in the Ostrovsky-Hunter equation, SIAM J. Math. Anal., 42 (2010), 1967-1985.doi: 10.1137/09075799X.

    [15]

    M. A. Manna and A. Neveu, Short-wave dynamics in the Euler equations, Inverse Problems, 17 (2001), 855-861.doi: 10.1088/0266-5611/17/4/317.

    [16]

    A. J. Morrison, E. J. Parkes and V. O. Vakhnenko, The $N$ loop soliton solutions of the Vakhnenko equation, Nonlinearity, 12 (1999), 1427-1437.doi: 10.1088/0951-7715/12/5/314.

    [17]

    L. A. Ostrovsky, Nonlinear internal waves in a rotating ocean, Okeanologia, 18 (1978), 181-191.

    [18]

    D. Pelinovsky and A. Sakovich, Global well-posedness of the short-pulse and sine-Gordon equations in energy space, Comm. Part. Diff. Eqs., 35 (2010), 613-629.doi: 10.1080/03605300903509104.

    [19]

    J. Satsuma and D. J. Kaup, A Bäcklund transformation for a higher-order Korteweg-de Vries equation, J. Phys. Soc. Japan, 43 (1977), 692-726.doi: 10.1143/JPSJ.43.692.

    [20]

    A. Stefanov, Y. Shen and P. G. Kevrekidis, Well-posedness and small data scattering for the generalized Ostrovsky equation, J. Diff. Eqs., 249 (2010), 2600-2617.doi: 10.1016/j.jde.2010.05.015.

    [21]

    K. Tsugawa, Well-posedness and weak rotation limit for the Ostrovsky equation, J. Diff. Eqs., 247 (2009), 3163-3180.doi: 10.1016/j.jde.2009.09.009.

    [22]

    G. Tzitzeica, Sur une nouvelle classe des surfaces, C. R. Acad. Sci. Paris, 150 (1910), 955-956.

    [23]

    V. A. Vakhnenko, Solitons in a nonlinear model medium, J. Phys. A, 25 (1992), 4181-4187.doi: 10.1088/0305-4470/25/15/025.

    [24]

    V. O. Vakhnenko and E. J. Parkes, The calculation of multi-soliton solutions of the Vakhnenko equation by the inverse scattering method, Chaos, Solitons and Fractals, 13 (2002), 1819-1826.doi: 10.1016/S0960-0779(01)00200-4.

    [25]

    V. O. Vakhnenko, E. J. Parkes and A. J. Morrison, A Bäcklund transformation and the inverse scattering transform method for the generalised Vakhnenko equation, Chaos, Solitons and Fractals, 17 (2003), 683-692.doi: 10.1016/S0960-0779(02)00483-6.

    [26]

    V. Varlamov and Y. Liu, Cauchy problem for the Ostrovsky equation, Discr. Cont. Dyn. Syst., 10 (2004), 731-753.doi: 10.3934/dcds.2004.10.731.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(52) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return