February  2014, 34(2): 567-587. doi: 10.3934/dcds.2014.34.567

Global weak solutions to the two-dimensional Navier-Stokes equations of compressible heat-conducting flows with symmetric data and forces

1. 

College of Mathematics and Computer Science, Fuzhou University, Fuzhou, 361000, China

2. 

Institute of Applied Physics and Computational Mathematics, P.O.Box 8009-28, Beijing 100088

3. 

Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088, China

Received  September 2012 Revised  May 2013 Published  August 2013

We prove the global existence of weak solutions to the Navier-Stokes equations of compressible heat-conducting fluids in two spatial dimensions with initial data and external forces which are large and spherically symmetric. The solutions will be obtained as the limit of the approximate solutions in an annular domain. We first derive a number of regularity results on the approximate physical quantities in the ``fluid region'', as well as the new uniform integrability of the velocity and temperature in the entire space-time domain by exploiting the theory of the Orlicz spaces. By virtue of these a priori estimates we then argue in a manner similar to that in [Arch. Rational Mech. Anal. 173 (2004), 297-343] to pass to the limit and show that the limiting functions are indeed a weak solution which satisfies the mass and momentum equations in the entire space-time domain in the sense of distributions, and the energy equation in any compact subset of the ``fluid region''.
Citation: Fei Jiang, Song Jiang, Junpin Yin. Global weak solutions to the two-dimensional Navier-Stokes equations of compressible heat-conducting flows with symmetric data and forces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 567-587. doi: 10.3934/dcds.2014.34.567
References:
[1]

R. A. Adams and J. John, "Sobolev Space,", $2^{nd}$ edition, (2005).   Google Scholar

[2]

D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids,, J. Math. Pures Appl. (9), 87 (2007), 57.  doi: 10.1016/j.matpur.2006.11.001.  Google Scholar

[3]

R. Erban, On the existence of solutions to the Navier-Stokes equations of a two-dimensional compressible flow,, Math. Meth. Appl. Sci., 26 (2003), 489.  doi: 10.1002/mma.362.  Google Scholar

[4]

E. Feireisl, "Dynamics of Viscous Compressible Fluids,", Oxford Lecture Series in Mathematics and its Applications, 26 (2004).   Google Scholar

[5]

E. Feireisl, On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not integrable,, Comment. Math. Univ. Carolinae, 42 (2001), 83.   Google Scholar

[6]

E. Feireisl and A. Novotnỳ, "Singular Limits in Thermodynamics of Viscous Fluids,", Advances in Mathematical Fluid Mechanics, (2009).  doi: 10.1007/978-3-7643-8843-0.  Google Scholar

[7]

E. Feireisl, A. Novotnỳ and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations,, J. Math. Fluid Mech., 3 (2001), 358.  doi: 10.1007/PL00000976.  Google Scholar

[8]

H. Frid and V. Shelukhin, Vanishing shear viscosity in the equations of compressible fluids for the flows with the cylinder symmetry,, SIAM J. Math. Anal., 31 (2000), 1144.  doi: 10.1137/S003614109834394X.  Google Scholar

[9]

D. Hoff, Spherically symmetric solutions of the Navier-Stokes equations for compressible, isothermal flow with large, discontinuous initial data,, Indiana Univ. Math. J., 41 (1992), 1225.  doi: 10.1512/iumj.1992.41.41060.  Google Scholar

[10]

D. Hoff and H. K. Jenssen, Symmetric nonbarotropic flows with large data and forces,, Arch. Rational Mech. Anal., 173 (2004), 297.  doi: 10.1007/s00205-004-0318-5.  Google Scholar

[11]

F. Jiang and Z. Tan, On the domain dependence of solutions to the Navier-Stokes equations of a two-dimensional compressible flow,, Math. Meth. Appl. Sci., 32 (2009), 2350.  doi: 10.1002/mma.1138.  Google Scholar

[12]

S. Jiang and P. Zhang, Axisymmetric solutions of the 3D Navier-Stokes equations for compressible isentropic fluids,, J. Math. Pures Appl. (9), 82 (2003), 949.  doi: 10.1016/S0021-7824(03)00015-1.  Google Scholar

[13]

S. Jiang and P. Zhang, On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations,, Comm. Math. Phys., 215 (2001), 559.  doi: 10.1007/PL00005543.  Google Scholar

[14]

S. Jiang and P. Zhang, Remarks on weak solutions to the Navier-Stokes equations for 2-D compressible isothermal fluids with spherically symmetric initial data,, Indiana Univ. Math. J., 51 (2002), 345.  doi: 10.1512/iumj.2002.51.2264.  Google Scholar

[15]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases,, J. Math. Kyoto Univ., 20 (1980), 67.   Google Scholar

[16]

A. Kazhikhov and V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas,, J. Appl. Math. Mech., 41 (1977), 273.   Google Scholar

[17]

A. Kufner, O. John and S. Fučik, "Function Spaces,", Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis, (1977).   Google Scholar

[18]

P.-L. Lions, "Mathematical Topics in Fluid Mechanics. Vol. 2. Compressible Models,", Oxford Lecture Series in Mathematics and its Applications, 10 (1998).   Google Scholar

[19]

J. Zhang, S. Jiang and F. Xie, Global weak solutions of an initial boundary value problem for screw pinches in plasma physics,, Math. Models Meth. Appl. Sci., 19 (2009), 833.  doi: 10.1142/S0218202509003644.  Google Scholar

show all references

References:
[1]

R. A. Adams and J. John, "Sobolev Space,", $2^{nd}$ edition, (2005).   Google Scholar

[2]

D. Bresch and B. Desjardins, On the existence of global weak solutions to the Navier-Stokes equations for viscous compressible and heat conducting fluids,, J. Math. Pures Appl. (9), 87 (2007), 57.  doi: 10.1016/j.matpur.2006.11.001.  Google Scholar

[3]

R. Erban, On the existence of solutions to the Navier-Stokes equations of a two-dimensional compressible flow,, Math. Meth. Appl. Sci., 26 (2003), 489.  doi: 10.1002/mma.362.  Google Scholar

[4]

E. Feireisl, "Dynamics of Viscous Compressible Fluids,", Oxford Lecture Series in Mathematics and its Applications, 26 (2004).   Google Scholar

[5]

E. Feireisl, On compactness of solutions to the compressible isentropic Navier-Stokes equations when the density is not integrable,, Comment. Math. Univ. Carolinae, 42 (2001), 83.   Google Scholar

[6]

E. Feireisl and A. Novotnỳ, "Singular Limits in Thermodynamics of Viscous Fluids,", Advances in Mathematical Fluid Mechanics, (2009).  doi: 10.1007/978-3-7643-8843-0.  Google Scholar

[7]

E. Feireisl, A. Novotnỳ and H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations,, J. Math. Fluid Mech., 3 (2001), 358.  doi: 10.1007/PL00000976.  Google Scholar

[8]

H. Frid and V. Shelukhin, Vanishing shear viscosity in the equations of compressible fluids for the flows with the cylinder symmetry,, SIAM J. Math. Anal., 31 (2000), 1144.  doi: 10.1137/S003614109834394X.  Google Scholar

[9]

D. Hoff, Spherically symmetric solutions of the Navier-Stokes equations for compressible, isothermal flow with large, discontinuous initial data,, Indiana Univ. Math. J., 41 (1992), 1225.  doi: 10.1512/iumj.1992.41.41060.  Google Scholar

[10]

D. Hoff and H. K. Jenssen, Symmetric nonbarotropic flows with large data and forces,, Arch. Rational Mech. Anal., 173 (2004), 297.  doi: 10.1007/s00205-004-0318-5.  Google Scholar

[11]

F. Jiang and Z. Tan, On the domain dependence of solutions to the Navier-Stokes equations of a two-dimensional compressible flow,, Math. Meth. Appl. Sci., 32 (2009), 2350.  doi: 10.1002/mma.1138.  Google Scholar

[12]

S. Jiang and P. Zhang, Axisymmetric solutions of the 3D Navier-Stokes equations for compressible isentropic fluids,, J. Math. Pures Appl. (9), 82 (2003), 949.  doi: 10.1016/S0021-7824(03)00015-1.  Google Scholar

[13]

S. Jiang and P. Zhang, On spherically symmetric solutions of the compressible isentropic Navier-Stokes equations,, Comm. Math. Phys., 215 (2001), 559.  doi: 10.1007/PL00005543.  Google Scholar

[14]

S. Jiang and P. Zhang, Remarks on weak solutions to the Navier-Stokes equations for 2-D compressible isothermal fluids with spherically symmetric initial data,, Indiana Univ. Math. J., 51 (2002), 345.  doi: 10.1512/iumj.2002.51.2264.  Google Scholar

[15]

A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases,, J. Math. Kyoto Univ., 20 (1980), 67.   Google Scholar

[16]

A. Kazhikhov and V. Shelukhin, Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas,, J. Appl. Math. Mech., 41 (1977), 273.   Google Scholar

[17]

A. Kufner, O. John and S. Fučik, "Function Spaces,", Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis, (1977).   Google Scholar

[18]

P.-L. Lions, "Mathematical Topics in Fluid Mechanics. Vol. 2. Compressible Models,", Oxford Lecture Series in Mathematics and its Applications, 10 (1998).   Google Scholar

[19]

J. Zhang, S. Jiang and F. Xie, Global weak solutions of an initial boundary value problem for screw pinches in plasma physics,, Math. Models Meth. Appl. Sci., 19 (2009), 833.  doi: 10.1142/S0218202509003644.  Google Scholar

[1]

Wenjun Wang, Lei Yao. Spherically symmetric Navier-Stokes equations with degenerate viscosity coefficients and vacuum. Communications on Pure & Applied Analysis, 2010, 9 (2) : 459-481. doi: 10.3934/cpaa.2010.9.459

[2]

Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control & Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61

[3]

J. Huang, Marius Paicu. Decay estimates of global solution to 2D incompressible Navier-Stokes equations with variable viscosity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4647-4669. doi: 10.3934/dcds.2014.34.4647

[4]

Jingrui Wang, Keyan Wang. Almost sure existence of global weak solutions to the 3D incompressible Navier-Stokes equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 5003-5019. doi: 10.3934/dcds.2017215

[5]

Shuguang Shao, Shu Wang, Wen-Qing Xu, Bin Han. Global existence for the 2D Navier-Stokes flow in the exterior of a moving or rotating obstacle. Kinetic & Related Models, 2016, 9 (4) : 767-776. doi: 10.3934/krm.2016015

[6]

Yutaka Tsuzuki. Solvability of generalized nonlinear heat equations with constraints coupled with Navier--Stokes equations in 2D domains. Conference Publications, 2015, 2015 (special) : 1079-1088. doi: 10.3934/proc.2015.1079

[7]

Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure & Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35

[8]

Daniel Pardo, José Valero, Ángel Giménez. Global attractors for weak solutions of the three-dimensional Navier-Stokes equations with damping. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3569-3590. doi: 10.3934/dcdsb.2018279

[9]

Yutaka Tsuzuki. Solvability of $p$-Laplacian parabolic logistic equations with constraints coupled with Navier-Stokes equations in 2D domains. Evolution Equations & Control Theory, 2014, 3 (1) : 191-206. doi: 10.3934/eect.2014.3.191

[10]

Grzegorz Łukaszewicz. Pullback attractors and statistical solutions for 2-D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 643-659. doi: 10.3934/dcdsb.2008.9.643

[11]

Igor Kukavica. Interior gradient bounds for the 2D Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 873-882. doi: 10.3934/dcds.2001.7.873

[12]

Julia García-Luengo, Pedro Marín-Rubio, José Real. Some new regularity results of pullback attractors for 2D Navier-Stokes equations with delays. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1603-1621. doi: 10.3934/cpaa.2015.14.1603

[13]

Songsong Lu, Hongqing Wu, Chengkui Zhong. Attractors for nonautonomous 2d Navier-Stokes equations with normal external forces. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 701-719. doi: 10.3934/dcds.2005.13.701

[14]

Hakima Bessaih, Benedetta Ferrario. Statistical properties of stochastic 2D Navier-Stokes equations from linear models. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 2927-2947. doi: 10.3934/dcdsb.2016080

[15]

Ruihong Ji, Yongfu Wang. Mass concentration phenomenon to the 2D Cauchy problem of the compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1117-1133. doi: 10.3934/dcds.2019047

[16]

Peter E. Kloeden, José Valero. The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 161-179. doi: 10.3934/dcds.2010.28.161

[17]

Michele Campiti, Giovanni P. Galdi, Matthias Hieber. Global existence of strong solutions for $2$-dimensional Navier-Stokes equations on exterior domains with growing data at infinity. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1613-1627. doi: 10.3934/cpaa.2014.13.1613

[18]

Joanna Rencławowicz, Wojciech M. Zajączkowski. Global regular solutions to the Navier-Stokes equations with large flux. Conference Publications, 2011, 2011 (Special) : 1234-1243. doi: 10.3934/proc.2011.2011.1234

[19]

Peixin Zhang, Jianwen Zhang, Junning Zhao. On the global existence of classical solutions for compressible Navier-Stokes equations with vacuum. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1085-1103. doi: 10.3934/dcds.2016.36.1085

[20]

Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations II: Global existence of small solutions. Evolution Equations & Control Theory, 2012, 1 (1) : 217-234. doi: 10.3934/eect.2012.1.217

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]