Citation: |
[1] |
U. Feudel, S. Kuznetsov and A. Pikovsky, "Strange Nonchaotic Attractors. Dynamics Between Order and Chaos in Quasiperiodically Forced Systems," World Scientific Series on Nonlinear Science, Series A: Monographs and Treatises, 56, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006. |
[2] |
C. Grebogi, E. Ott, S. Pelikan and J. A. Yorke, Strange attractors that are not chaotic, Phys. D, 13 (1984), 261-268.doi: 10.1016/0167-2789(84)90282-3. |
[3] |
À. Jorba, P. Rabassa and J. C. Tatjer, Period doubling and reducibility in the quasi-periodically forced logistic map, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 1507-1535.doi: 10.3934/dcdsb.2012.17.1507. |
[4] |
À. Jorba and J. C. Tatjer, A mechanism for the fractalization of invariant curves in quasi-periodically forced 1-D maps, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 537-567.doi: 10.3934/dcdsb.2008.10.537. |
[5] |
K. Kaneko, Doubling of torus, Progr. Theoret. Phys., 69 (1983), 1806-1810.doi: 10.1143/PTP.69.1806. |
[6] |
K. Kaneko, Oscillation and doubling of torus, Progr. Theoret. Phys., 72 (1984), 202-215.doi: 10.1143/PTP.72.202. |
[7] |
A. Prasad, S. S. Negi and R. Ramaswamy, Strange nonchaotic attractors, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 11 (2001), 291-309.doi: 10.1142/S0218127401002195. |
[8] |
P. Rabassa, À. Jorba and J. C. Tatjer, A numerical study of universality and self-similarity in some families of forced logistic maps, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 23 (2013), 1350072, 11 pp.doi: 10.1142/S0218127413500727. |