February  2014, 34(2): 677-688. doi: 10.3934/dcds.2014.34.677

Gevrey normal forms for nilpotent contact points of order two

1. 

Hasselt University, Campus Diepenbeek, Agoralaan-Gebouw D, B-3590 Diepenbeek, Belgium

Received  January 2013 Revised  March 2013 Published  August 2013

This paper deals with normal forms about contact points (`turning points') of nilpotent type that one frequently encounters in the study of planar slow-fast systems. In case the contact point of an analytic slow-fast vector field is of order two, we prove that the slow-fast vector field can locally be written as a slow-fast Liénard equation up to exponentially small error. The proof is based on the use of Gevrey asymptotics. Furthermore, for slow-fast jump points, we eliminate the exponentially small remainder.
Citation: P. De Maesschalck. Gevrey normal forms for nilpotent contact points of order two. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 677-688. doi: 10.3934/dcds.2014.34.677
References:
[1]

P. Bonckaert and P. De Maesschalck, Gevrey and analytic local models for families of vector fields,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 377. doi: 10.3934/dcdsb.2008.10.377. Google Scholar

[2]

Éric Benoît, Perturbation singulière en dimension trois: Canards en un point pseudo-singulier nœud,, Bull. Soc. Math. France, 129 (2001), 91. Google Scholar

[3]

Bernard Candelpergher, Francine Diener and Marc Diener, Retard à la bifurcation: Du local au global,, In, 1455 (1990), 1. doi: 10.1007/BFb0085388. Google Scholar

[4]

M. Canalis-Durand, J. P. Ramis, R. Schäfke and Y. Sibuya, Gevrey solutions of singularly perturbed differential equations,, J. Reine Angew. Math., 518 (2000), 95. doi: 10.1515/crll.2000.008. Google Scholar

[5]

Mireille Canalis-Durand and Reinhard Schäfke, Divergence and summability of normal forms of systems of differential equations with nilpotent linear part,, Ann. Fac. Sci. Toulouse Math. (6), 13 (2004), 493. doi: 10.5802/afst.1079. Google Scholar

[6]

P. De Maesschalck, F. Dumortier and R. Roussarie, Cyclicity of common slow-fast cycles,, Indag. Math. (N.S.), 22 (2011), 165. doi: 10.1016/j.indag.2011.09.008. Google Scholar

[7]

Peter De Maesschalck and Nikola Popović, Gevrey properties of the asymptotic critical wave speed in a family of scalar reaction-diffusion equations,, J. Math. Anal. Appl., 386 (2012), 542. doi: 10.1016/j.jmaa.2011.08.016. Google Scholar

[8]

Freddy Dumortier, Compactification and desingularization of spaces of polynomial Liénard equations,, J. Differential Equations, 224 (2006), 296. doi: 10.1016/j.jde.2005.08.011. Google Scholar

[9]

A. Fruchard and R. Schäfke, Overstability and resonance,, Ann. Inst. Fourier (Grenoble), 53 (2003), 227. doi: 10.5802/aif.1943. Google Scholar

[10]

Masaki Hibino, Borel summability of divergent solutions for singularly perturbed first-order ordinary differential equations,, Tohoku Math. J. (2), 58 (2006), 237. Google Scholar

[11]

Gérard Iooss and Eric Lombardi, Normal forms with exponentially small remainder: application to homoclinic connections for the reversible $0^{2+}i\omega$ resonance,, C. R. Math. Acad. Sci. Paris, 339 (2004), 831. doi: 10.1016/j.crma.2004.10.002. Google Scholar

[12]

Frank Loray, Réduction formelle des singularités cuspidales de champs de vecteurs analytiques,, J. Differential Equations, 158 (1999), 152. doi: 10.1016/S0022-0396(99)80021-7. Google Scholar

[13]

Eric Lombardi and Laurent Stolovitch, Normal forms of analytic perturbations of quasihomogeneous vector fields: rigidity, invariant analytic sets and exponentially small approximation,, Ann. Sci. Éc. Norm. Supér. (4), 43 (2010), 659. Google Scholar

[14]

Robert Roussarie, Putting a boundary to the space of Liénard equations,, Discrete Contin. Dyn. Syst., 17 (2007), 441. doi: 10.3934/dcds.2007.17.441. Google Scholar

[15]

Reinhard Schäfke, Gevrey asymptotics in singular perturbations of ODE,, in, (2000), 118. Google Scholar

[16]

Yasutaka Sibuya, The Gevrey asymptotics in the case of singular perturbations,, J. Differential Equations, 165 (2000), 255. doi: 10.1006/jdeq.2000.3787. Google Scholar

[17]

Ewa Stróżyna and Henryk Żoładek, The analytic and formal normal form for the nilpotent singularity,, J. Differential Equations, 179 (2002), 479. doi: 10.1006/jdeq.2001.4043. Google Scholar

[18]

Ewa Stróżyna and Henryk Żoładek, Orbital formal normal forms for general Bogdanov-Takens singularity,, J. Differential Equations, 193 (2003), 239. doi: 10.1016/S0022-0396(03)00137-2. Google Scholar

show all references

References:
[1]

P. Bonckaert and P. De Maesschalck, Gevrey and analytic local models for families of vector fields,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 377. doi: 10.3934/dcdsb.2008.10.377. Google Scholar

[2]

Éric Benoît, Perturbation singulière en dimension trois: Canards en un point pseudo-singulier nœud,, Bull. Soc. Math. France, 129 (2001), 91. Google Scholar

[3]

Bernard Candelpergher, Francine Diener and Marc Diener, Retard à la bifurcation: Du local au global,, In, 1455 (1990), 1. doi: 10.1007/BFb0085388. Google Scholar

[4]

M. Canalis-Durand, J. P. Ramis, R. Schäfke and Y. Sibuya, Gevrey solutions of singularly perturbed differential equations,, J. Reine Angew. Math., 518 (2000), 95. doi: 10.1515/crll.2000.008. Google Scholar

[5]

Mireille Canalis-Durand and Reinhard Schäfke, Divergence and summability of normal forms of systems of differential equations with nilpotent linear part,, Ann. Fac. Sci. Toulouse Math. (6), 13 (2004), 493. doi: 10.5802/afst.1079. Google Scholar

[6]

P. De Maesschalck, F. Dumortier and R. Roussarie, Cyclicity of common slow-fast cycles,, Indag. Math. (N.S.), 22 (2011), 165. doi: 10.1016/j.indag.2011.09.008. Google Scholar

[7]

Peter De Maesschalck and Nikola Popović, Gevrey properties of the asymptotic critical wave speed in a family of scalar reaction-diffusion equations,, J. Math. Anal. Appl., 386 (2012), 542. doi: 10.1016/j.jmaa.2011.08.016. Google Scholar

[8]

Freddy Dumortier, Compactification and desingularization of spaces of polynomial Liénard equations,, J. Differential Equations, 224 (2006), 296. doi: 10.1016/j.jde.2005.08.011. Google Scholar

[9]

A. Fruchard and R. Schäfke, Overstability and resonance,, Ann. Inst. Fourier (Grenoble), 53 (2003), 227. doi: 10.5802/aif.1943. Google Scholar

[10]

Masaki Hibino, Borel summability of divergent solutions for singularly perturbed first-order ordinary differential equations,, Tohoku Math. J. (2), 58 (2006), 237. Google Scholar

[11]

Gérard Iooss and Eric Lombardi, Normal forms with exponentially small remainder: application to homoclinic connections for the reversible $0^{2+}i\omega$ resonance,, C. R. Math. Acad. Sci. Paris, 339 (2004), 831. doi: 10.1016/j.crma.2004.10.002. Google Scholar

[12]

Frank Loray, Réduction formelle des singularités cuspidales de champs de vecteurs analytiques,, J. Differential Equations, 158 (1999), 152. doi: 10.1016/S0022-0396(99)80021-7. Google Scholar

[13]

Eric Lombardi and Laurent Stolovitch, Normal forms of analytic perturbations of quasihomogeneous vector fields: rigidity, invariant analytic sets and exponentially small approximation,, Ann. Sci. Éc. Norm. Supér. (4), 43 (2010), 659. Google Scholar

[14]

Robert Roussarie, Putting a boundary to the space of Liénard equations,, Discrete Contin. Dyn. Syst., 17 (2007), 441. doi: 10.3934/dcds.2007.17.441. Google Scholar

[15]

Reinhard Schäfke, Gevrey asymptotics in singular perturbations of ODE,, in, (2000), 118. Google Scholar

[16]

Yasutaka Sibuya, The Gevrey asymptotics in the case of singular perturbations,, J. Differential Equations, 165 (2000), 255. doi: 10.1006/jdeq.2000.3787. Google Scholar

[17]

Ewa Stróżyna and Henryk Żoładek, The analytic and formal normal form for the nilpotent singularity,, J. Differential Equations, 179 (2002), 479. doi: 10.1006/jdeq.2001.4043. Google Scholar

[18]

Ewa Stróżyna and Henryk Żoładek, Orbital formal normal forms for general Bogdanov-Takens singularity,, J. Differential Equations, 193 (2003), 239. doi: 10.1016/S0022-0396(03)00137-2. Google Scholar

[1]

Alexandre Vidal. Periodic orbits of tritrophic slow-fast system and double homoclinic bifurcations. Conference Publications, 2007, 2007 (Special) : 1021-1030. doi: 10.3934/proc.2007.2007.1021

[2]

Jie Xu, Yu Miao, Jicheng Liu. Strong averaging principle for slow-fast SPDEs with Poisson random measures. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2233-2256. doi: 10.3934/dcdsb.2015.20.2233

[3]

Yong Xu, Bin Pei, Rong Guo. Stochastic averaging for slow-fast dynamical systems with fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2257-2267. doi: 10.3934/dcdsb.2015.20.2257

[4]

Renato Huzak. Cyclicity of the origin in slow-fast codimension 3 saddle and elliptic bifurcations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 171-215. doi: 10.3934/dcds.2016.36.171

[5]

Luca Dieci, Cinzia Elia. Smooth to discontinuous systems: A geometric and numerical method for slow-fast dynamics. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2935-2950. doi: 10.3934/dcdsb.2018112

[6]

Fangfang Jiang, Junping Shi, Qing-guo Wang, Jitao Sun. On the existence and uniqueness of a limit cycle for a Liénard system with a discontinuity line. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2509-2526. doi: 10.3934/cpaa.2016047

[7]

Jitsuro Sugie, Tadayuki Hara. Existence and non-existence of homoclinic trajectories of the Liénard system. Discrete & Continuous Dynamical Systems - A, 1996, 2 (2) : 237-254. doi: 10.3934/dcds.1996.2.237

[8]

Min Hu, Tao Li, Xingwu Chen. Bi-center problem and Hopf cyclicity of a Cubic Liénard system. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 401-414. doi: 10.3934/dcdsb.2019187

[9]

Ilya Schurov. Duck farming on the two-torus: Multiple canard cycles in generic slow-fast systems. Conference Publications, 2011, 2011 (Special) : 1289-1298. doi: 10.3934/proc.2011.2011.1289

[10]

Anatoly Neishtadt, Carles Simó, Dmitry Treschev, Alexei Vasiliev. Periodic orbits and stability islands in chaotic seas created by separatrix crossings in slow-fast systems. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 621-650. doi: 10.3934/dcdsb.2008.10.621

[11]

Renato Huzak, P. De Maesschalck, Freddy Dumortier. Primary birth of canard cycles in slow-fast codimension 3 elliptic bifurcations. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2641-2673. doi: 10.3934/cpaa.2014.13.2641

[12]

Mats Gyllenberg, Yan Ping. The generalized Liénard systems. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 1043-1057. doi: 10.3934/dcds.2002.8.1043

[13]

Vincent Naudot, Jiazhong Yang. Finite smooth normal forms and integrability of local families of vector fields. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 667-682. doi: 10.3934/dcdss.2010.3.667

[14]

Tomas Johnson, Warwick Tucker. Automated computation of robust normal forms of planar analytic vector fields. Discrete & Continuous Dynamical Systems - B, 2009, 12 (4) : 769-782. doi: 10.3934/dcdsb.2009.12.769

[15]

Paweł Lubowiecki, Henryk Żołądek. The Hess-Appelrot system. I. Invariant torus and its normal hyperbolicity. Journal of Geometric Mechanics, 2012, 4 (4) : 443-467. doi: 10.3934/jgm.2012.4.443

[16]

Na Li, Maoan Han, Valery G. Romanovski. Cyclicity of some Liénard Systems. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2127-2150. doi: 10.3934/cpaa.2015.14.2127

[17]

Andreas Henrici. Symmetries of the periodic Toda lattice, with an application to normal forms and perturbations of the lattice with Dirichlet boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2949-2977. doi: 10.3934/dcds.2015.35.2949

[18]

Luigi Chierchia, Gabriella Pinzari. Planetary Birkhoff normal forms. Journal of Modern Dynamics, 2011, 5 (4) : 623-664. doi: 10.3934/jmd.2011.5.623

[19]

Jaume Llibre, Claudia Valls. On the analytic integrability of the Liénard analytic differential systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 557-573. doi: 10.3934/dcdsb.2016.21.557

[20]

Bin Liu. Quasiperiodic solutions of semilinear Liénard equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 137-160. doi: 10.3934/dcds.2005.12.137

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]