February  2014, 34(2): 677-688. doi: 10.3934/dcds.2014.34.677

Gevrey normal forms for nilpotent contact points of order two

1. 

Hasselt University, Campus Diepenbeek, Agoralaan-Gebouw D, B-3590 Diepenbeek, Belgium

Received  January 2013 Revised  March 2013 Published  August 2013

This paper deals with normal forms about contact points (`turning points') of nilpotent type that one frequently encounters in the study of planar slow-fast systems. In case the contact point of an analytic slow-fast vector field is of order two, we prove that the slow-fast vector field can locally be written as a slow-fast Liénard equation up to exponentially small error. The proof is based on the use of Gevrey asymptotics. Furthermore, for slow-fast jump points, we eliminate the exponentially small remainder.
Citation: P. De Maesschalck. Gevrey normal forms for nilpotent contact points of order two. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 677-688. doi: 10.3934/dcds.2014.34.677
References:
[1]

P. Bonckaert and P. De Maesschalck, Gevrey and analytic local models for families of vector fields,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 377.  doi: 10.3934/dcdsb.2008.10.377.  Google Scholar

[2]

Éric Benoît, Perturbation singulière en dimension trois: Canards en un point pseudo-singulier nœud,, Bull. Soc. Math. France, 129 (2001), 91.   Google Scholar

[3]

Bernard Candelpergher, Francine Diener and Marc Diener, Retard à la bifurcation: Du local au global,, In, 1455 (1990), 1.  doi: 10.1007/BFb0085388.  Google Scholar

[4]

M. Canalis-Durand, J. P. Ramis, R. Schäfke and Y. Sibuya, Gevrey solutions of singularly perturbed differential equations,, J. Reine Angew. Math., 518 (2000), 95.  doi: 10.1515/crll.2000.008.  Google Scholar

[5]

Mireille Canalis-Durand and Reinhard Schäfke, Divergence and summability of normal forms of systems of differential equations with nilpotent linear part,, Ann. Fac. Sci. Toulouse Math. (6), 13 (2004), 493.  doi: 10.5802/afst.1079.  Google Scholar

[6]

P. De Maesschalck, F. Dumortier and R. Roussarie, Cyclicity of common slow-fast cycles,, Indag. Math. (N.S.), 22 (2011), 165.  doi: 10.1016/j.indag.2011.09.008.  Google Scholar

[7]

Peter De Maesschalck and Nikola Popović, Gevrey properties of the asymptotic critical wave speed in a family of scalar reaction-diffusion equations,, J. Math. Anal. Appl., 386 (2012), 542.  doi: 10.1016/j.jmaa.2011.08.016.  Google Scholar

[8]

Freddy Dumortier, Compactification and desingularization of spaces of polynomial Liénard equations,, J. Differential Equations, 224 (2006), 296.  doi: 10.1016/j.jde.2005.08.011.  Google Scholar

[9]

A. Fruchard and R. Schäfke, Overstability and resonance,, Ann. Inst. Fourier (Grenoble), 53 (2003), 227.  doi: 10.5802/aif.1943.  Google Scholar

[10]

Masaki Hibino, Borel summability of divergent solutions for singularly perturbed first-order ordinary differential equations,, Tohoku Math. J. (2), 58 (2006), 237.   Google Scholar

[11]

Gérard Iooss and Eric Lombardi, Normal forms with exponentially small remainder: application to homoclinic connections for the reversible $0^{2+}i\omega$ resonance,, C. R. Math. Acad. Sci. Paris, 339 (2004), 831.  doi: 10.1016/j.crma.2004.10.002.  Google Scholar

[12]

Frank Loray, Réduction formelle des singularités cuspidales de champs de vecteurs analytiques,, J. Differential Equations, 158 (1999), 152.  doi: 10.1016/S0022-0396(99)80021-7.  Google Scholar

[13]

Eric Lombardi and Laurent Stolovitch, Normal forms of analytic perturbations of quasihomogeneous vector fields: rigidity, invariant analytic sets and exponentially small approximation,, Ann. Sci. Éc. Norm. Supér. (4), 43 (2010), 659.   Google Scholar

[14]

Robert Roussarie, Putting a boundary to the space of Liénard equations,, Discrete Contin. Dyn. Syst., 17 (2007), 441.  doi: 10.3934/dcds.2007.17.441.  Google Scholar

[15]

Reinhard Schäfke, Gevrey asymptotics in singular perturbations of ODE,, in, (2000), 118.   Google Scholar

[16]

Yasutaka Sibuya, The Gevrey asymptotics in the case of singular perturbations,, J. Differential Equations, 165 (2000), 255.  doi: 10.1006/jdeq.2000.3787.  Google Scholar

[17]

Ewa Stróżyna and Henryk Żoładek, The analytic and formal normal form for the nilpotent singularity,, J. Differential Equations, 179 (2002), 479.  doi: 10.1006/jdeq.2001.4043.  Google Scholar

[18]

Ewa Stróżyna and Henryk Żoładek, Orbital formal normal forms for general Bogdanov-Takens singularity,, J. Differential Equations, 193 (2003), 239.  doi: 10.1016/S0022-0396(03)00137-2.  Google Scholar

show all references

References:
[1]

P. Bonckaert and P. De Maesschalck, Gevrey and analytic local models for families of vector fields,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 377.  doi: 10.3934/dcdsb.2008.10.377.  Google Scholar

[2]

Éric Benoît, Perturbation singulière en dimension trois: Canards en un point pseudo-singulier nœud,, Bull. Soc. Math. France, 129 (2001), 91.   Google Scholar

[3]

Bernard Candelpergher, Francine Diener and Marc Diener, Retard à la bifurcation: Du local au global,, In, 1455 (1990), 1.  doi: 10.1007/BFb0085388.  Google Scholar

[4]

M. Canalis-Durand, J. P. Ramis, R. Schäfke and Y. Sibuya, Gevrey solutions of singularly perturbed differential equations,, J. Reine Angew. Math., 518 (2000), 95.  doi: 10.1515/crll.2000.008.  Google Scholar

[5]

Mireille Canalis-Durand and Reinhard Schäfke, Divergence and summability of normal forms of systems of differential equations with nilpotent linear part,, Ann. Fac. Sci. Toulouse Math. (6), 13 (2004), 493.  doi: 10.5802/afst.1079.  Google Scholar

[6]

P. De Maesschalck, F. Dumortier and R. Roussarie, Cyclicity of common slow-fast cycles,, Indag. Math. (N.S.), 22 (2011), 165.  doi: 10.1016/j.indag.2011.09.008.  Google Scholar

[7]

Peter De Maesschalck and Nikola Popović, Gevrey properties of the asymptotic critical wave speed in a family of scalar reaction-diffusion equations,, J. Math. Anal. Appl., 386 (2012), 542.  doi: 10.1016/j.jmaa.2011.08.016.  Google Scholar

[8]

Freddy Dumortier, Compactification and desingularization of spaces of polynomial Liénard equations,, J. Differential Equations, 224 (2006), 296.  doi: 10.1016/j.jde.2005.08.011.  Google Scholar

[9]

A. Fruchard and R. Schäfke, Overstability and resonance,, Ann. Inst. Fourier (Grenoble), 53 (2003), 227.  doi: 10.5802/aif.1943.  Google Scholar

[10]

Masaki Hibino, Borel summability of divergent solutions for singularly perturbed first-order ordinary differential equations,, Tohoku Math. J. (2), 58 (2006), 237.   Google Scholar

[11]

Gérard Iooss and Eric Lombardi, Normal forms with exponentially small remainder: application to homoclinic connections for the reversible $0^{2+}i\omega$ resonance,, C. R. Math. Acad. Sci. Paris, 339 (2004), 831.  doi: 10.1016/j.crma.2004.10.002.  Google Scholar

[12]

Frank Loray, Réduction formelle des singularités cuspidales de champs de vecteurs analytiques,, J. Differential Equations, 158 (1999), 152.  doi: 10.1016/S0022-0396(99)80021-7.  Google Scholar

[13]

Eric Lombardi and Laurent Stolovitch, Normal forms of analytic perturbations of quasihomogeneous vector fields: rigidity, invariant analytic sets and exponentially small approximation,, Ann. Sci. Éc. Norm. Supér. (4), 43 (2010), 659.   Google Scholar

[14]

Robert Roussarie, Putting a boundary to the space of Liénard equations,, Discrete Contin. Dyn. Syst., 17 (2007), 441.  doi: 10.3934/dcds.2007.17.441.  Google Scholar

[15]

Reinhard Schäfke, Gevrey asymptotics in singular perturbations of ODE,, in, (2000), 118.   Google Scholar

[16]

Yasutaka Sibuya, The Gevrey asymptotics in the case of singular perturbations,, J. Differential Equations, 165 (2000), 255.  doi: 10.1006/jdeq.2000.3787.  Google Scholar

[17]

Ewa Stróżyna and Henryk Żoładek, The analytic and formal normal form for the nilpotent singularity,, J. Differential Equations, 179 (2002), 479.  doi: 10.1006/jdeq.2001.4043.  Google Scholar

[18]

Ewa Stróżyna and Henryk Żoładek, Orbital formal normal forms for general Bogdanov-Takens singularity,, J. Differential Equations, 193 (2003), 239.  doi: 10.1016/S0022-0396(03)00137-2.  Google Scholar

[1]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[2]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[3]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[4]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[5]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[6]

Ying Lin, Qi Ye. Support vector machine classifiers by non-Euclidean margins. Mathematical Foundations of Computing, 2020, 3 (4) : 279-300. doi: 10.3934/mfc.2020018

[7]

Wen Li, Wei-Hui Liu, Seak Weng Vong. Perron vector analysis for irreducible nonnegative tensors and its applications. Journal of Industrial & Management Optimization, 2021, 17 (1) : 29-50. doi: 10.3934/jimo.2019097

[8]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[9]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[10]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[11]

Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111

[12]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[13]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[14]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[15]

Feifei Cheng, Ji Li. Geometric singular perturbation analysis of Degasperis-Procesi equation with distributed delay. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 967-985. doi: 10.3934/dcds.2020305

[16]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[17]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[18]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[19]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[20]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (54)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]