\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Gevrey normal forms for nilpotent contact points of order two

Abstract Related Papers Cited by
  • This paper deals with normal forms about contact points (`turning points') of nilpotent type that one frequently encounters in the study of planar slow-fast systems. In case the contact point of an analytic slow-fast vector field is of order two, we prove that the slow-fast vector field can locally be written as a slow-fast Liénard equation up to exponentially small error. The proof is based on the use of Gevrey asymptotics. Furthermore, for slow-fast jump points, we eliminate the exponentially small remainder.
    Mathematics Subject Classification: Primary: 34D14, 34A26; Secondary: 34M30, 34M60.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    P. Bonckaert and P. De Maesschalck, Gevrey and analytic local models for families of vector fields, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 377-400.doi: 10.3934/dcdsb.2008.10.377.

    [2]

    Éric Benoît, Perturbation singulière en dimension trois: Canards en un point pseudo-singulier nœud, Bull. Soc. Math. France, 129 (2001), 91-113.

    [3]

    Bernard Candelpergher, Francine Diener and Marc Diener, Retard à la bifurcation: Du local au global, In "Bifurcations of Planar Vector Fields" (Luminy, 1989), Lecture Notes in Math., 1455, Springer, Berlin, (1990), 1-19.doi: 10.1007/BFb0085388.

    [4]

    M. Canalis-Durand, J. P. Ramis, R. Schäfke and Y. Sibuya, Gevrey solutions of singularly perturbed differential equations, J. Reine Angew. Math., 518 (2000), 95-129.doi: 10.1515/crll.2000.008.

    [5]

    Mireille Canalis-Durand and Reinhard Schäfke, Divergence and summability of normal forms of systems of differential equations with nilpotent linear part, Ann. Fac. Sci. Toulouse Math. (6), 13 (2004), 493-513.doi: 10.5802/afst.1079.

    [6]

    P. De Maesschalck, F. Dumortier and R. Roussarie, Cyclicity of common slow-fast cycles, Indag. Math. (N.S.), 22 (2011), 165-206.doi: 10.1016/j.indag.2011.09.008.

    [7]

    Peter De Maesschalck and Nikola Popović, Gevrey properties of the asymptotic critical wave speed in a family of scalar reaction-diffusion equations, J. Math. Anal. Appl., 386 (2012), 542-558.doi: 10.1016/j.jmaa.2011.08.016.

    [8]

    Freddy Dumortier, Compactification and desingularization of spaces of polynomial Liénard equations, J. Differential Equations, 224 (2006), 296-313.doi: 10.1016/j.jde.2005.08.011.

    [9]

    A. Fruchard and R. Schäfke, Overstability and resonance, Ann. Inst. Fourier (Grenoble), 53 (2003), 227-264.doi: 10.5802/aif.1943.

    [10]

    Masaki Hibino, Borel summability of divergent solutions for singularly perturbed first-order ordinary differential equations, Tohoku Math. J. (2), 58 (2006), 237-258.

    [11]

    Gérard Iooss and Eric Lombardi, Normal forms with exponentially small remainder: application to homoclinic connections for the reversible $0^{2+}i\omega$ resonance, C. R. Math. Acad. Sci. Paris, 339 (2004), 831-838.doi: 10.1016/j.crma.2004.10.002.

    [12]

    Frank Loray, Réduction formelle des singularités cuspidales de champs de vecteurs analytiques, J. Differential Equations, 158 (1999), 152-173.doi: 10.1016/S0022-0396(99)80021-7.

    [13]

    Eric Lombardi and Laurent Stolovitch, Normal forms of analytic perturbations of quasihomogeneous vector fields: rigidity, invariant analytic sets and exponentially small approximation, Ann. Sci. Éc. Norm. Supér. (4), 43 (2010), 659-718.

    [14]

    Robert Roussarie, Putting a boundary to the space of Liénard equations, Discrete Contin. Dyn. Syst., 17 (2007), 441-448.doi: 10.3934/dcds.2007.17.441.

    [15]

    Reinhard Schäfke, Gevrey asymptotics in singular perturbations of ODE, in "International Conference on Differential Equations, Vol. 1, 2" (Berlin, 1999), World Sci. Publ., River Edge, NJ, (2000), 118-123.

    [16]

    Yasutaka Sibuya, The Gevrey asymptotics in the case of singular perturbations, J. Differential Equations, 165 (2000), 255-314.doi: 10.1006/jdeq.2000.3787.

    [17]

    Ewa Stróżyna and Henryk Żoładek, The analytic and formal normal form for the nilpotent singularity, J. Differential Equations, 179 (2002), 479-537.doi: 10.1006/jdeq.2001.4043.

    [18]

    Ewa Stróżyna and Henryk Żoładek, Orbital formal normal forms for general Bogdanov-Takens singularity, J. Differential Equations, 193 (2003), 239-259.doi: 10.1016/S0022-0396(03)00137-2.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(104) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return