February  2014, 34(2): 689-707. doi: 10.3934/dcds.2014.34.689

Invariant Tori for Benjamin-Ono Equation with Unbounded quasi-periodically forced Perturbation

1. 

Department of Mathematics and Information Science, Binzhou University, Binzhou Shandong 256600, China

2. 

School of Mathematical Sciences, Fudan University, Shanghai 200433, China

Received  August 2012 Revised  May 2013 Published  August 2013

In this paper, we consider the non-autonomous Benjamin-Ono equation $$u_t+\mathscr{H}u_{xx}- uu_x- (F(\omega t,x,u))_x=0$$ under periodic boundary conditions. Using an abstract infinite dimensional KAM theorem dealing with unbounded perturbation vector-field and partial Birkhoff normal form, we will prove that there exists a Cantorian branch of KAM tori and thus many time quasi-periodic solutions for the above equation.
Citation: Lufang Mi, Kangkang Zhang. Invariant Tori for Benjamin-Ono Equation with Unbounded quasi-periodically forced Perturbation. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 689-707. doi: 10.3934/dcds.2014.34.689
References:
[1]

M. J. Ablowitz and A. S. Fokas, The inverse scattering transform for the Benjamin-Ono equation-a pivot for multidimensional problems, Stud. Appl. Math., 68 (1983), 1-10.

[2]

D. Bambusi and S. Graffi, Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods, Comm. Math. Phys., 219 (2001), 465-480. doi: 10.1007/s002200100426.

[3]

M. Berti and M. Procesi, Quasi-periodic solutions of completely resonant forced wave equations, Comm. Partial Differential Equations, 31 (2006), 959-985. doi: 10.1080/03605300500358129.

[4]

Zh. Burgeĭn, Recent progress on quasi-periodic lattice Schrödinger operators and Hamiltonian PDEs, Russian Math. Surveys, 59 (2004), 231-246. doi: 10.1070/RM2004v059n02ABEH000716.

[5]

M. Gao and J. Liu, Quasi-periodic solutions for derivative nonlinear Schrödinger equation, Discrete Contin. Dyn. Syst., 32 (2012), 2101-2123. doi: 10.3934/dcds.2012.32.2101.

[6]

L. Jiao and Y. Wang, The construction of quasi-periocic solutions of quasi-periodic forced Schrödinger equation, Commun. Pure Appl. Anal., 8 (2009), 1585-1606. doi: 10.3934/cpaa.2009.8.1585.

[7]

T. Kappeler and J. Pöschel, "KdV & KAM," Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas, 3rd Series, A Series of Modern Surveys in Mathematics], 45, Springer-Verlag, Berlin, 2003.

[8]

S. Klainerman, Long-time behaviour of solutions to nonliear wave equations, in "Proceedings of International Congress of Mathematicians, Vol. 1, 2" (Warsaw, 1983), PWN, Warsaw, (1984), 1209-1215.

[9]

S. B. Kuksin and J. Pöschel, Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. Math. (2), 143 (1996), 149-179. doi: 10.2307/2118656.

[10]

S. B. Kuksin, On small-denominators equations with large variable coefficients, Z. Angew. Math. Phys., 48 (1997), 262-271. doi: 10.1007/PL00001476.

[11]

S. B. Kuksin, "Analysis of Hamiltonian PDEs," Oxford Lecture Series in Mathematics and its Applications, 19, Oxford University Press, Oxford, 2000.

[12]

S. B. Kuksin, Fifteen years of KAM in PDE, in "Geometry, Topology, and Mathematical Physics" (eds. V. M. Buchstaber and I. M. Krichever), Amer. Math. Soc. Transl. Ser. 2, 212 Amer. Math. Soc., Providence, RI, (2004), 237-258.

[13]

P. D. Lax, Development of singularities of solutions of nonlinear hyperbolic partial differential equations, J. Math. Phys., 5 (1964), 611-613. doi: 10.1063/1.1704154.

[14]

J. Liu and X. Yuan, Spectrum for quantum Duffing oscillator and small-divisor equation with large-variable coefficient, Commun. Pure Appl. Math., 63 (2010), 1145-1172. doi: 10.1002/cpa.20314.

[15]

J. Liu and X. Yuan, A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations, Commun. Math. Phys., 307 (2011), 629-673. doi: 10.1007/s00220-011-1353-3.

[16]

L. Mi, Quasi-periodic Solutions of derivative nonlinear Schrödinger equations with a given potential, J. Math. Anal. Appl., 390 (2012), 335-354. doi: 10.1016/j.jmaa.2012.01.046.

[17]

L. Molinet, Global well-posedness in the energy space for the Benjamin-Ono equation on the circle, Math. Ann., 337 (2007), 353-383. doi: 10.1007/s00208-006-0038-2.

[18]

L. Molinet, Global well-posedness in $L^2$ for the periodic Benjamin-Ono equation, Amer. J. Math., 130 (2008), 635-683. doi: 10.1353/ajm.0.0001.

[19]

J. Pöschel, Quasi-periodic solutions for a nonlinear wave equations, Comment. Math. Helv., 71 (1996), 269-296. doi: 10.1007/BF02566420.

[20]

J. Si, Quasi-periodic solutions of a non-autonomous wave equations with quasi-periodic forcing, J. Differential Equations, 252 (2012), 5274-5360. doi: 10.1016/j.jde.2012.01.034.

[21]

Y. Wang, Quasi-periodic solutions of a quasi-periodically forced nonlinear beam equation, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 2682-2700. doi: 10.1016/j.cnsns.2011.10.022.

[22]

J. Zhang, M. Gao and X. Yuan, KAM tori for reversible partial differtial equations, Nonliearity, 24 (2011), 1189-1228. doi: 10.1088/0951-7715/24/4/010.

show all references

References:
[1]

M. J. Ablowitz and A. S. Fokas, The inverse scattering transform for the Benjamin-Ono equation-a pivot for multidimensional problems, Stud. Appl. Math., 68 (1983), 1-10.

[2]

D. Bambusi and S. Graffi, Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods, Comm. Math. Phys., 219 (2001), 465-480. doi: 10.1007/s002200100426.

[3]

M. Berti and M. Procesi, Quasi-periodic solutions of completely resonant forced wave equations, Comm. Partial Differential Equations, 31 (2006), 959-985. doi: 10.1080/03605300500358129.

[4]

Zh. Burgeĭn, Recent progress on quasi-periodic lattice Schrödinger operators and Hamiltonian PDEs, Russian Math. Surveys, 59 (2004), 231-246. doi: 10.1070/RM2004v059n02ABEH000716.

[5]

M. Gao and J. Liu, Quasi-periodic solutions for derivative nonlinear Schrödinger equation, Discrete Contin. Dyn. Syst., 32 (2012), 2101-2123. doi: 10.3934/dcds.2012.32.2101.

[6]

L. Jiao and Y. Wang, The construction of quasi-periocic solutions of quasi-periodic forced Schrödinger equation, Commun. Pure Appl. Anal., 8 (2009), 1585-1606. doi: 10.3934/cpaa.2009.8.1585.

[7]

T. Kappeler and J. Pöschel, "KdV & KAM," Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas, 3rd Series, A Series of Modern Surveys in Mathematics], 45, Springer-Verlag, Berlin, 2003.

[8]

S. Klainerman, Long-time behaviour of solutions to nonliear wave equations, in "Proceedings of International Congress of Mathematicians, Vol. 1, 2" (Warsaw, 1983), PWN, Warsaw, (1984), 1209-1215.

[9]

S. B. Kuksin and J. Pöschel, Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. Math. (2), 143 (1996), 149-179. doi: 10.2307/2118656.

[10]

S. B. Kuksin, On small-denominators equations with large variable coefficients, Z. Angew. Math. Phys., 48 (1997), 262-271. doi: 10.1007/PL00001476.

[11]

S. B. Kuksin, "Analysis of Hamiltonian PDEs," Oxford Lecture Series in Mathematics and its Applications, 19, Oxford University Press, Oxford, 2000.

[12]

S. B. Kuksin, Fifteen years of KAM in PDE, in "Geometry, Topology, and Mathematical Physics" (eds. V. M. Buchstaber and I. M. Krichever), Amer. Math. Soc. Transl. Ser. 2, 212 Amer. Math. Soc., Providence, RI, (2004), 237-258.

[13]

P. D. Lax, Development of singularities of solutions of nonlinear hyperbolic partial differential equations, J. Math. Phys., 5 (1964), 611-613. doi: 10.1063/1.1704154.

[14]

J. Liu and X. Yuan, Spectrum for quantum Duffing oscillator and small-divisor equation with large-variable coefficient, Commun. Pure Appl. Math., 63 (2010), 1145-1172. doi: 10.1002/cpa.20314.

[15]

J. Liu and X. Yuan, A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations, Commun. Math. Phys., 307 (2011), 629-673. doi: 10.1007/s00220-011-1353-3.

[16]

L. Mi, Quasi-periodic Solutions of derivative nonlinear Schrödinger equations with a given potential, J. Math. Anal. Appl., 390 (2012), 335-354. doi: 10.1016/j.jmaa.2012.01.046.

[17]

L. Molinet, Global well-posedness in the energy space for the Benjamin-Ono equation on the circle, Math. Ann., 337 (2007), 353-383. doi: 10.1007/s00208-006-0038-2.

[18]

L. Molinet, Global well-posedness in $L^2$ for the periodic Benjamin-Ono equation, Amer. J. Math., 130 (2008), 635-683. doi: 10.1353/ajm.0.0001.

[19]

J. Pöschel, Quasi-periodic solutions for a nonlinear wave equations, Comment. Math. Helv., 71 (1996), 269-296. doi: 10.1007/BF02566420.

[20]

J. Si, Quasi-periodic solutions of a non-autonomous wave equations with quasi-periodic forcing, J. Differential Equations, 252 (2012), 5274-5360. doi: 10.1016/j.jde.2012.01.034.

[21]

Y. Wang, Quasi-periodic solutions of a quasi-periodically forced nonlinear beam equation, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 2682-2700. doi: 10.1016/j.cnsns.2011.10.022.

[22]

J. Zhang, M. Gao and X. Yuan, KAM tori for reversible partial differtial equations, Nonliearity, 24 (2011), 1189-1228. doi: 10.1088/0951-7715/24/4/010.

[1]

Dongfeng Yan. KAM Tori for generalized Benjamin-Ono equation. Communications on Pure and Applied Analysis, 2015, 14 (3) : 941-957. doi: 10.3934/cpaa.2015.14.941

[2]

Thomas Kappeler, Riccardo Montalto. Normal form coordinates for the Benjamin-Ono equation having expansions in terms of pseudo-differential operators. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022048

[3]

Jerry Bona, H. Kalisch. Singularity formation in the generalized Benjamin-Ono equation. Discrete and Continuous Dynamical Systems, 2004, 11 (1) : 27-45. doi: 10.3934/dcds.2004.11.27

[4]

Amin Esfahani, Steve Levandosky. Solitary waves of the rotation-generalized Benjamin-Ono equation. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 663-700. doi: 10.3934/dcds.2013.33.663

[5]

Sondre Tesdal Galtung. A convergent Crank-Nicolson Galerkin scheme for the Benjamin-Ono equation. Discrete and Continuous Dynamical Systems, 2018, 38 (3) : 1243-1268. doi: 10.3934/dcds.2018051

[6]

Nakao Hayashi, Pavel Naumkin. On the reduction of the modified Benjamin-Ono equation to the cubic derivative nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 237-255. doi: 10.3934/dcds.2002.8.237

[7]

Kenta Ohi, Tatsuo Iguchi. A two-phase problem for capillary-gravity waves and the Benjamin-Ono equation. Discrete and Continuous Dynamical Systems, 2009, 23 (4) : 1205-1240. doi: 10.3934/dcds.2009.23.1205

[8]

G. Fonseca, G. Rodríguez-Blanco, W. Sandoval. Well-posedness and ill-posedness results for the regularized Benjamin-Ono equation in weighted Sobolev spaces. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1327-1341. doi: 10.3934/cpaa.2015.14.1327

[9]

Yingte Sun, Xiaoping Yuan. Quasi-periodic solution of quasi-linear fifth-order KdV equation. Discrete and Continuous Dynamical Systems, 2018, 38 (12) : 6241-6285. doi: 10.3934/dcds.2018268

[10]

Alan Compelli, Rossen Ivanov. Benjamin-Ono model of an internal wave under a flat surface. Discrete and Continuous Dynamical Systems, 2019, 39 (8) : 4519-4532. doi: 10.3934/dcds.2019185

[11]

Zhichao Ma, Junxiang Xu. A KAM theorem for quasi-periodic non-twist mappings and its application. Discrete and Continuous Dynamical Systems, 2022, 42 (7) : 3169-3185. doi: 10.3934/dcds.2022013

[12]

Yanling Shi, Junxiang Xu, Xindong Xu. Quasi-periodic solutions of generalized Boussinesq equation with quasi-periodic forcing. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2501-2519. doi: 10.3934/dcdsb.2017104

[13]

Lei Jiao, Yiqian Wang. The construction of quasi-periodic solutions of quasi-periodic forced Schrödinger equation. Communications on Pure and Applied Analysis, 2009, 8 (5) : 1585-1606. doi: 10.3934/cpaa.2009.8.1585

[14]

Yanling Shi, Junxiang Xu. Quasi-periodic solutions for a class of beam equation system. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 31-53. doi: 10.3934/dcdsb.2019171

[15]

Siqi Xu, Dongfeng Yan. Smooth quasi-periodic solutions for the perturbed mKdV equation. Communications on Pure and Applied Analysis, 2016, 15 (5) : 1857-1869. doi: 10.3934/cpaa.2016019

[16]

Meina Gao, Jianjun Liu. Quasi-periodic solutions for derivative nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2101-2123. doi: 10.3934/dcds.2012.32.2101

[17]

Zhenguo Liang, Jiansheng Geng. Quasi-periodic solutions for 1D resonant beam equation. Communications on Pure and Applied Analysis, 2006, 5 (4) : 839-853. doi: 10.3934/cpaa.2006.5.839

[18]

Yanling Shi, Junxiang Xu. Quasi-periodic solutions for nonlinear wave equation with Liouvillean frequency. Discrete and Continuous Dynamical Systems - B, 2021, 26 (7) : 3479-3490. doi: 10.3934/dcdsb.2020241

[19]

Robert Schippa. On the Cauchy problem for higher dimensional Benjamin-Ono and Zakharov-Kuznetsov equations. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5189-5215. doi: 10.3934/dcds.2020225

[20]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (82)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]