February  2014, 34(2): 689-707. doi: 10.3934/dcds.2014.34.689

Invariant Tori for Benjamin-Ono Equation with Unbounded quasi-periodically forced Perturbation

1. 

Department of Mathematics and Information Science, Binzhou University, Binzhou Shandong 256600, China

2. 

School of Mathematical Sciences, Fudan University, Shanghai 200433, China

Received  August 2012 Revised  May 2013 Published  August 2013

In this paper, we consider the non-autonomous Benjamin-Ono equation $$u_t+\mathscr{H}u_{xx}- uu_x- (F(\omega t,x,u))_x=0$$ under periodic boundary conditions. Using an abstract infinite dimensional KAM theorem dealing with unbounded perturbation vector-field and partial Birkhoff normal form, we will prove that there exists a Cantorian branch of KAM tori and thus many time quasi-periodic solutions for the above equation.
Citation: Lufang Mi, Kangkang Zhang. Invariant Tori for Benjamin-Ono Equation with Unbounded quasi-periodically forced Perturbation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 689-707. doi: 10.3934/dcds.2014.34.689
References:
[1]

M. J. Ablowitz and A. S. Fokas, The inverse scattering transform for the Benjamin-Ono equation-a pivot for multidimensional problems,, Stud. Appl. Math., 68 (1983), 1.   Google Scholar

[2]

D. Bambusi and S. Graffi, Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods,, Comm. Math. Phys., 219 (2001), 465.  doi: 10.1007/s002200100426.  Google Scholar

[3]

M. Berti and M. Procesi, Quasi-periodic solutions of completely resonant forced wave equations,, Comm. Partial Differential Equations, 31 (2006), 959.  doi: 10.1080/03605300500358129.  Google Scholar

[4]

Zh. Burgeĭn, Recent progress on quasi-periodic lattice Schrödinger operators and Hamiltonian PDEs,, Russian Math. Surveys, 59 (2004), 231.  doi: 10.1070/RM2004v059n02ABEH000716.  Google Scholar

[5]

M. Gao and J. Liu, Quasi-periodic solutions for derivative nonlinear Schrödinger equation,, Discrete Contin. Dyn. Syst., 32 (2012), 2101.  doi: 10.3934/dcds.2012.32.2101.  Google Scholar

[6]

L. Jiao and Y. Wang, The construction of quasi-periocic solutions of quasi-periodic forced Schrödinger equation,, Commun. Pure Appl. Anal., 8 (2009), 1585.  doi: 10.3934/cpaa.2009.8.1585.  Google Scholar

[7]

T. Kappeler and J. Pöschel, "KdV & KAM,", Ergebnisse der Mathematik und ihrer Grenzgebiete, 45 (2003).   Google Scholar

[8]

S. Klainerman, Long-time behaviour of solutions to nonliear wave equations,, in, (1984), 1209.   Google Scholar

[9]

S. B. Kuksin and J. Pöschel, Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation,, Ann. Math. (2), 143 (1996), 149.  doi: 10.2307/2118656.  Google Scholar

[10]

S. B. Kuksin, On small-denominators equations with large variable coefficients,, Z. Angew. Math. Phys., 48 (1997), 262.  doi: 10.1007/PL00001476.  Google Scholar

[11]

S. B. Kuksin, "Analysis of Hamiltonian PDEs,", Oxford Lecture Series in Mathematics and its Applications, 19 (2000).   Google Scholar

[12]

S. B. Kuksin, Fifteen years of KAM in PDE,, in, 212 (2004), 237.   Google Scholar

[13]

P. D. Lax, Development of singularities of solutions of nonlinear hyperbolic partial differential equations,, J. Math. Phys., 5 (1964), 611.  doi: 10.1063/1.1704154.  Google Scholar

[14]

J. Liu and X. Yuan, Spectrum for quantum Duffing oscillator and small-divisor equation with large-variable coefficient,, Commun. Pure Appl. Math., 63 (2010), 1145.  doi: 10.1002/cpa.20314.  Google Scholar

[15]

J. Liu and X. Yuan, A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations,, Commun. Math. Phys., 307 (2011), 629.  doi: 10.1007/s00220-011-1353-3.  Google Scholar

[16]

L. Mi, Quasi-periodic Solutions of derivative nonlinear Schrödinger equations with a given potential,, J. Math. Anal. Appl., 390 (2012), 335.  doi: 10.1016/j.jmaa.2012.01.046.  Google Scholar

[17]

L. Molinet, Global well-posedness in the energy space for the Benjamin-Ono equation on the circle,, Math. Ann., 337 (2007), 353.  doi: 10.1007/s00208-006-0038-2.  Google Scholar

[18]

L. Molinet, Global well-posedness in $L^2$ for the periodic Benjamin-Ono equation,, Amer. J. Math., 130 (2008), 635.  doi: 10.1353/ajm.0.0001.  Google Scholar

[19]

J. Pöschel, Quasi-periodic solutions for a nonlinear wave equations,, Comment. Math. Helv., 71 (1996), 269.  doi: 10.1007/BF02566420.  Google Scholar

[20]

J. Si, Quasi-periodic solutions of a non-autonomous wave equations with quasi-periodic forcing,, J. Differential Equations, 252 (2012), 5274.  doi: 10.1016/j.jde.2012.01.034.  Google Scholar

[21]

Y. Wang, Quasi-periodic solutions of a quasi-periodically forced nonlinear beam equation,, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 2682.  doi: 10.1016/j.cnsns.2011.10.022.  Google Scholar

[22]

J. Zhang, M. Gao and X. Yuan, KAM tori for reversible partial differtial equations,, Nonliearity, 24 (2011), 1189.  doi: 10.1088/0951-7715/24/4/010.  Google Scholar

show all references

References:
[1]

M. J. Ablowitz and A. S. Fokas, The inverse scattering transform for the Benjamin-Ono equation-a pivot for multidimensional problems,, Stud. Appl. Math., 68 (1983), 1.   Google Scholar

[2]

D. Bambusi and S. Graffi, Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods,, Comm. Math. Phys., 219 (2001), 465.  doi: 10.1007/s002200100426.  Google Scholar

[3]

M. Berti and M. Procesi, Quasi-periodic solutions of completely resonant forced wave equations,, Comm. Partial Differential Equations, 31 (2006), 959.  doi: 10.1080/03605300500358129.  Google Scholar

[4]

Zh. Burgeĭn, Recent progress on quasi-periodic lattice Schrödinger operators and Hamiltonian PDEs,, Russian Math. Surveys, 59 (2004), 231.  doi: 10.1070/RM2004v059n02ABEH000716.  Google Scholar

[5]

M. Gao and J. Liu, Quasi-periodic solutions for derivative nonlinear Schrödinger equation,, Discrete Contin. Dyn. Syst., 32 (2012), 2101.  doi: 10.3934/dcds.2012.32.2101.  Google Scholar

[6]

L. Jiao and Y. Wang, The construction of quasi-periocic solutions of quasi-periodic forced Schrödinger equation,, Commun. Pure Appl. Anal., 8 (2009), 1585.  doi: 10.3934/cpaa.2009.8.1585.  Google Scholar

[7]

T. Kappeler and J. Pöschel, "KdV & KAM,", Ergebnisse der Mathematik und ihrer Grenzgebiete, 45 (2003).   Google Scholar

[8]

S. Klainerman, Long-time behaviour of solutions to nonliear wave equations,, in, (1984), 1209.   Google Scholar

[9]

S. B. Kuksin and J. Pöschel, Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation,, Ann. Math. (2), 143 (1996), 149.  doi: 10.2307/2118656.  Google Scholar

[10]

S. B. Kuksin, On small-denominators equations with large variable coefficients,, Z. Angew. Math. Phys., 48 (1997), 262.  doi: 10.1007/PL00001476.  Google Scholar

[11]

S. B. Kuksin, "Analysis of Hamiltonian PDEs,", Oxford Lecture Series in Mathematics and its Applications, 19 (2000).   Google Scholar

[12]

S. B. Kuksin, Fifteen years of KAM in PDE,, in, 212 (2004), 237.   Google Scholar

[13]

P. D. Lax, Development of singularities of solutions of nonlinear hyperbolic partial differential equations,, J. Math. Phys., 5 (1964), 611.  doi: 10.1063/1.1704154.  Google Scholar

[14]

J. Liu and X. Yuan, Spectrum for quantum Duffing oscillator and small-divisor equation with large-variable coefficient,, Commun. Pure Appl. Math., 63 (2010), 1145.  doi: 10.1002/cpa.20314.  Google Scholar

[15]

J. Liu and X. Yuan, A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations,, Commun. Math. Phys., 307 (2011), 629.  doi: 10.1007/s00220-011-1353-3.  Google Scholar

[16]

L. Mi, Quasi-periodic Solutions of derivative nonlinear Schrödinger equations with a given potential,, J. Math. Anal. Appl., 390 (2012), 335.  doi: 10.1016/j.jmaa.2012.01.046.  Google Scholar

[17]

L. Molinet, Global well-posedness in the energy space for the Benjamin-Ono equation on the circle,, Math. Ann., 337 (2007), 353.  doi: 10.1007/s00208-006-0038-2.  Google Scholar

[18]

L. Molinet, Global well-posedness in $L^2$ for the periodic Benjamin-Ono equation,, Amer. J. Math., 130 (2008), 635.  doi: 10.1353/ajm.0.0001.  Google Scholar

[19]

J. Pöschel, Quasi-periodic solutions for a nonlinear wave equations,, Comment. Math. Helv., 71 (1996), 269.  doi: 10.1007/BF02566420.  Google Scholar

[20]

J. Si, Quasi-periodic solutions of a non-autonomous wave equations with quasi-periodic forcing,, J. Differential Equations, 252 (2012), 5274.  doi: 10.1016/j.jde.2012.01.034.  Google Scholar

[21]

Y. Wang, Quasi-periodic solutions of a quasi-periodically forced nonlinear beam equation,, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 2682.  doi: 10.1016/j.cnsns.2011.10.022.  Google Scholar

[22]

J. Zhang, M. Gao and X. Yuan, KAM tori for reversible partial differtial equations,, Nonliearity, 24 (2011), 1189.  doi: 10.1088/0951-7715/24/4/010.  Google Scholar

[1]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[2]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[3]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021002

[4]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[5]

Jiangtao Yang. Permanence, extinction and periodic solution of a stochastic single-species model with Lévy noises. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020371

[6]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[7]

Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160

[8]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[9]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[10]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065

[11]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[12]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[13]

Tomáš Oberhuber, Tomáš Dytrych, Kristina D. Launey, Daniel Langr, Jerry P. Draayer. Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1111-1122. doi: 10.3934/dcdss.2020383

[14]

Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347

[15]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[16]

Kung-Ching Chang, Xuefeng Wang, Xie Wu. On the spectral theory of positive operators and PDE applications. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3171-3200. doi: 10.3934/dcds.2020054

[17]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[18]

Yanhong Zhang. Global attractors of two layer baroclinic quasi-geostrophic model. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021023

[19]

Mengyu Cheng, Zhenxin Liu. Periodic, almost periodic and almost automorphic solutions for SPDEs with monotone coefficients. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021026

[20]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (39)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]