February  2014, 34(2): 709-732. doi: 10.3934/dcds.2014.34.709

On the derivative of the $\alpha$-Farey-Minkowski function

1. 

Department of Mathematics, University Walk, Clifton, Bristol BS8 1TW, United Kingdom

Received  February 2013 Revised  April 2013 Published  August 2013

In this paper we study the family of $\alpha$-Farey-Minkowski functions $\theta_\alpha$, for an arbitrary countable partition $\alpha$ of the unit interval with atoms which accumulate only at the origin, which are the conjugating homeomorphisms between each of the $\alpha$-Farey systems and the tent map. We first show that each function $\theta_\alpha$ is singular with respect to the Lebesgue measure and then demonstrate that the unit interval can be written as the disjoint union of the following three sets: $\Theta_0 : = \{x \in [0,1] : \theta_\alpha'(x)=0\}, \Theta_{\infty} : = \{ x \in [0,1] : \theta_\alpha'(x)=\infty \} $ and $\Theta_\sim : = \{ x \in [0,1] : \theta_\alpha'(x)\ does\ not\ exist \} $. The main result is that \[ \dim_{\mathrm{H}}(\Theta_\infty)=\dim_{\mathrm{H}}(\Theta_\sim)=\sigma_\alpha(\log2)<\dim_{\mathrm{H}}(\Theta_0)=1, \] where $\sigma_\alpha(\log2)$ denotes the Hausdorff dimension of the level set $\{x\in [0,1]:\Lambda(F_\alpha, x)=\log2\}$ and $\Lambda(F_\alpha, x)$ is the Lyapunov exponent of the map $F_\alpha$ at the point $x$. The proof of the theorem employs the multifractal formalism for $\alpha$-Farey systems.
Citation: Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709
References:
[1]

L. Barreira and J. Schmeling, Sets of "non-typical'' points have full topological entropy and full Hausdorff dimension,, Israel J. Math., 116 (2000), 29.  doi: 10.1007/BF02773211.  Google Scholar

[2]

J. Barrionuevo, R. M. Burton, K. Dajani and C. Kraaikamp, Ergodic properties of generalised Lüroth series,, Acta Arith., 74 (1996), 311.   Google Scholar

[3]

K. Falconer, "Techniques in Fractal Geometry,'', John Wiley & Sons, (1997).   Google Scholar

[4]

J. Jaerisch and M. Kesseböhmer, Regularity of multifractal spectra of conformal iterated function systems,, Trans. Amer. Math. Soc., 363 (2011), 313.  doi: 10.1090/S0002-9947-2010-05326-7.  Google Scholar

[5]

M. Kesseböhmer, S. Munday and B. O. Stratmann, Strong renewal theorems and Lyapunov spectra for $\alpha$-Farey and $\alpha$-Lüroth systems,, Ergodic Theory Dynam. Systems, 32 (2012), 989.  doi: 10.1017/S0143385711000186.  Google Scholar

[6]

M. Kesseböhmer and B. O. Stratmann, A multifractal analysis for Stern-Brocot intervals, continued fractions and Diophantine growth rates,, J. Reine Angew. Math., 605 (2007), 133.  doi: 10.1515/CRELLE.2007.029.  Google Scholar

[7]

M. Kesseböhmer and B. O. Stratmann, Fractal analysis for sets of non-differentiability of Minkowski's question mark function,, J. Number Theory, 128 (2008), 2663.  doi: 10.1016/j.jnt.2007.12.010.  Google Scholar

[8]

H. Minkowski, "Geometrie der Zahlen,'', Gesammelte Abhandlungen, (1967), 43.   Google Scholar

[9]

S. Munday, "Finite and Infinite Ergodic Theory for Linear and Conformal Dynamical Systems,'', Ph.D Thesis, (2011).   Google Scholar

[10]

J. Paradís and P. Viader, The derivative of Minkowski's $?(x)$ function,, J. Math. Anal. Appl., 253 (2001), 107.  doi: 10.1006/jmaa.2000.7064.  Google Scholar

[11]

J. Paradís, P. Viader and L. Bibiloni, Riesz-Nágy singular functions revisited,, J. Math. Anal. Appl., 329 (2007), 592.  doi: 10.1016/j.jmaa.2006.06.082.  Google Scholar

[12]

H. L. Royden, "Measure Theory,'', Third edition, (1988).   Google Scholar

[13]

R. Salem, On some singular monotonic functions which are strictly increasing,, Trans. Amer. Math. Soc., 53 (1943), 427.  doi: 10.1090/S0002-9947-1943-0007929-6.  Google Scholar

[14]

J. Tseng, Schmidt games and Markov partitions,, Nonlinearity, 22 (2009), 525.  doi: 10.1088/0951-7715/22/3/001.  Google Scholar

show all references

References:
[1]

L. Barreira and J. Schmeling, Sets of "non-typical'' points have full topological entropy and full Hausdorff dimension,, Israel J. Math., 116 (2000), 29.  doi: 10.1007/BF02773211.  Google Scholar

[2]

J. Barrionuevo, R. M. Burton, K. Dajani and C. Kraaikamp, Ergodic properties of generalised Lüroth series,, Acta Arith., 74 (1996), 311.   Google Scholar

[3]

K. Falconer, "Techniques in Fractal Geometry,'', John Wiley & Sons, (1997).   Google Scholar

[4]

J. Jaerisch and M. Kesseböhmer, Regularity of multifractal spectra of conformal iterated function systems,, Trans. Amer. Math. Soc., 363 (2011), 313.  doi: 10.1090/S0002-9947-2010-05326-7.  Google Scholar

[5]

M. Kesseböhmer, S. Munday and B. O. Stratmann, Strong renewal theorems and Lyapunov spectra for $\alpha$-Farey and $\alpha$-Lüroth systems,, Ergodic Theory Dynam. Systems, 32 (2012), 989.  doi: 10.1017/S0143385711000186.  Google Scholar

[6]

M. Kesseböhmer and B. O. Stratmann, A multifractal analysis for Stern-Brocot intervals, continued fractions and Diophantine growth rates,, J. Reine Angew. Math., 605 (2007), 133.  doi: 10.1515/CRELLE.2007.029.  Google Scholar

[7]

M. Kesseböhmer and B. O. Stratmann, Fractal analysis for sets of non-differentiability of Minkowski's question mark function,, J. Number Theory, 128 (2008), 2663.  doi: 10.1016/j.jnt.2007.12.010.  Google Scholar

[8]

H. Minkowski, "Geometrie der Zahlen,'', Gesammelte Abhandlungen, (1967), 43.   Google Scholar

[9]

S. Munday, "Finite and Infinite Ergodic Theory for Linear and Conformal Dynamical Systems,'', Ph.D Thesis, (2011).   Google Scholar

[10]

J. Paradís and P. Viader, The derivative of Minkowski's $?(x)$ function,, J. Math. Anal. Appl., 253 (2001), 107.  doi: 10.1006/jmaa.2000.7064.  Google Scholar

[11]

J. Paradís, P. Viader and L. Bibiloni, Riesz-Nágy singular functions revisited,, J. Math. Anal. Appl., 329 (2007), 592.  doi: 10.1016/j.jmaa.2006.06.082.  Google Scholar

[12]

H. L. Royden, "Measure Theory,'', Third edition, (1988).   Google Scholar

[13]

R. Salem, On some singular monotonic functions which are strictly increasing,, Trans. Amer. Math. Soc., 53 (1943), 427.  doi: 10.1090/S0002-9947-1943-0007929-6.  Google Scholar

[14]

J. Tseng, Schmidt games and Markov partitions,, Nonlinearity, 22 (2009), 525.  doi: 10.1088/0951-7715/22/3/001.  Google Scholar

[1]

Juan Wang, Xiaodan Zhang, Yun Zhao. Dimension estimates for arbitrary subsets of limit sets of a Markov construction and related multifractal analysis. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2315-2332. doi: 10.3934/dcds.2014.34.2315

[2]

Godofredo Iommi, Bartłomiej Skorulski. Multifractal analysis for the exponential family. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 857-869. doi: 10.3934/dcds.2006.16.857

[3]

Julien Barral, Yan-Hui Qu. On the higher-dimensional multifractal analysis. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 1977-1995. doi: 10.3934/dcds.2012.32.1977

[4]

Mario Roy, Mariusz Urbański. Multifractal analysis for conformal graph directed Markov systems. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 627-650. doi: 10.3934/dcds.2009.25.627

[5]

Zhihui Yuan. Multifractal analysis of random weak Gibbs measures. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5367-5405. doi: 10.3934/dcds.2017234

[6]

Luis Barreira. Dimension theory of flows: A survey. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3345-3362. doi: 10.3934/dcdsb.2015.20.3345

[7]

Manfred Deistler. Singular arma systems: A structure theory. Numerical Algebra, Control & Optimization, 2019, 9 (3) : 383-391. doi: 10.3934/naco.2019025

[8]

Mihaela Roxana Nicolai, Dan Tiba. Implicit functions and parametrizations in dimension three: Generalized solutions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2701-2710. doi: 10.3934/dcds.2015.35.2701

[9]

Luis Barreira, César Silva. Lyapunov exponents for continuous transformations and dimension theory. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 469-490. doi: 10.3934/dcds.2005.13.469

[10]

Hans Koch, Rafael De La Llave, Charles Radin. Aubry-Mather theory for functions on lattices. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 135-151. doi: 10.3934/dcds.1997.3.135

[11]

Piotr Fijałkowski. A global inversion theorem for functions with singular points. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 173-180. doi: 10.3934/dcdsb.2018011

[12]

Bernard Dacorogna. Necessary and sufficient conditions for strong ellipticity of isotropic functions in any dimension. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 257-263. doi: 10.3934/dcdsb.2001.1.257

[13]

Rui-Qi Liu, Chun-Lei Tang, Jia-Feng Liao, Xing-Ping Wu. Positive solutions of Kirchhoff type problem with singular and critical nonlinearities in dimension four. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1841-1856. doi: 10.3934/cpaa.2016006

[14]

Manassés de Souza. On a singular Hamiltonian elliptic systems involving critical growth in dimension two. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1859-1874. doi: 10.3934/cpaa.2012.11.1859

[15]

Jaroslaw Smieja, Malgorzata Kardynska, Arkadiusz Jamroz. The meaning of sensitivity functions in signaling pathways analysis. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2697-2707. doi: 10.3934/dcdsb.2014.19.2697

[16]

Frédéric Grognard, Frédéric Mazenc, Alain Rapaport. Polytopic Lyapunov functions for persistence analysis of competing species. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 73-93. doi: 10.3934/dcdsb.2007.8.73

[17]

Mirela Domijan, Markus Kirkilionis. Graph theory and qualitative analysis of reaction networks. Networks & Heterogeneous Media, 2008, 3 (2) : 295-322. doi: 10.3934/nhm.2008.3.295

[18]

Xifeng Su, Lin Wang, Jun Yan. Weak KAM theory for HAMILTON-JACOBI equations depending on unknown functions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6487-6522. doi: 10.3934/dcds.2016080

[19]

Ilona Gucwa, Peter Szmolyan. Geometric singular perturbation analysis of an autocatalator model. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 783-806. doi: 10.3934/dcdss.2009.2.783

[20]

Zhong-Qing Wang, Ben-Yu Guo, Yan-Na Wu. Pseudospectral method using generalized Laguerre functions for singular problems on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 1019-1038. doi: 10.3934/dcdsb.2009.11.1019

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]