February  2014, 34(2): 733-748. doi: 10.3934/dcds.2014.34.733

The defocusing $\dot{H}^{1/2}$-critical NLS in high dimensions

1. 

Department of Mathematics, UCLA, Los Angeles, CA 90095-1555, United States

Received  January 2013 Revised  February 2013 Published  August 2013

We consider the defocusing $\dot{H}^{1/2}$-critical nonlinear Schrödinger equation in dimensions $d\geq 4.$ In the spirit of Kenig and Merle [10], we combine a concentration-compactness approach with the Lin--Strauss Morawetz inequality to prove that if a solution $u$ is bounded in $\dot{H}^{1/2}$ throughout its lifespan, then $u$ is global and scatters.
Citation: Jason Murphy. The defocusing $\dot{H}^{1/2}$-critical NLS in high dimensions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 733-748. doi: 10.3934/dcds.2014.34.733
References:
[1]

P. Bégout and A. Vargas, Mass concentration phenomena for the $L^2$-critical nonlinear Schrödinger equation,, Trans. Amer. Math. Soc., 359 (2007), 5257. doi: 10.1090/S0002-9947-07-04250-X. Google Scholar

[2]

R. Carles and S. Keraani, On the role of quadratic oscillations in nonlinear Schrödinger equations. II. The $L^2$-critical case,, Trans. Amer. Math. Soc., 359 (2007), 33. doi: 10.1090/S0002-9947-06-03955-9. Google Scholar

[3]

T. Cazenave and F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$,, Nonlinear Anal., 14 (1990), 807. doi: 10.1016/0362-546X(90)90023-A. Google Scholar

[4]

T. Cazenave, "Semilinear Schrödinger Equations,", Courant Lecture Notes in Mathematics, 10 (2003). Google Scholar

[5]

M. Christ and M. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation,, J. Funct. Anal., 100 (1991), 87. doi: 10.1016/0022-1236(91)90103-C. Google Scholar

[6]

J. Ginibre and G. Velo, Smoothing properties and retarded estimates for some dispersive evolution equations,, Comm. Math. Phys., 144 (1992), 163. doi: 10.1007/BF02099195. Google Scholar

[7]

J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation,, Comm. Math. Phys., 282 (2008), 435. doi: 10.1007/s00220-008-0529-y. Google Scholar

[8]

M. Keel and T. Tao, Endpoint Strichartz estimates,, Amer. J. Math., 120 (1998), 955. doi: 10.1353/ajm.1998.0039. Google Scholar

[9]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case,, Invent. Math., 166 (2006), 645. doi: 10.1007/s00222-006-0011-4. Google Scholar

[10]

C. E. Kenig and F. Merle, Scattering for $\dotH^{1/2)$ bounded solutions to the cubic, defocusing NLS in 3 dimensions,, Trans. Amer. Math. Soc. 362 (2010), 362 (2010), 1937. doi: 10.1090/S0002-9947-09-04722-9. Google Scholar

[11]

S. Keraani, On the defect of compactness for the Strichartz estimates for the Schrödinger equations,, J. Diff. Eq., 175 (2001), 353. doi: 10.1006/jdeq.2000.3951. Google Scholar

[12]

S. Keraani, On the blow up phenomenon of the critical nonlinear Schrödinger equation,, J. Funct. Anal., 235 (2006), 171. doi: 10.1016/j.jfa.2005.10.005. Google Scholar

[13]

R. Killip, T. Tao and M. Visan, The cubic nonlinear Schrödinger equation in two dimensions with radial data,, J. Eur. Math. Soc. (JEMS), 11 (2009), 1203. doi: 10.4171/JEMS/180. Google Scholar

[14]

R. Killip and M. Visan, Nonlinear Schrödinger equations at critical regularity,, to appear in proceedings of the Clay summer school, (2008). Google Scholar

[15]

R. Killip and M. Visan, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher,, Amer. J. Math., 132 (2010), 361. doi: 10.1353/ajm.0.0107. Google Scholar

[16]

R. Killip and M. Visan, Energy-supercritical NLS: Critical $\dotH^s$-bounds imply scattering,, Comm. Partial Differential Equations, 35 (2010), 945. doi: 10.1080/03605301003717084. Google Scholar

[17]

R. Killip and M. Visan, The radial defocusing energy-supercritical nonlinear wave equation in all space dimensions,, Proc. Amer. Math. Soc., 139 (2011), 1805. doi: 10.1090/S0002-9939-2010-10615-9. Google Scholar

[18]

J. Lin and W. Strauss, Decay and scattering of solutions of a nonlinear Schrödinger equation,, J. Funct. Anal., 30 (1978), 245. doi: 10.1016/0022-1236(78)90073-3. Google Scholar

[19]

F. Merle and L. Vega, Compactness at blow-up time for $L^2$ solutions of the critical nonlinear Schrödinger equation in 2$D$,, Int. Math. Res. Not., (1998), 399. doi: 10.1155/S1073792898000270. Google Scholar

[20]

J. Murphy, Inter-critical NLS: Critical $\dotH^s$-bounds imply scattering,, , (). Google Scholar

[21]

S. Shao, Maximizers for the Strichartz inequalities and Sobolev-Strichartz inequalities for the Schrödinger equation,, Electron. J. Differential Equations, (2009). Google Scholar

[22]

R. S. Strichartz, Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations,, Duke Math. J., 44 (1977), 705. doi: 10.1215/S0012-7094-77-04430-1. Google Scholar

[23]

T. Tao, M. Visan and X. Zhang, Minimal-mass blowup solutions of the mass-critical NLS,, Forum Math., 20 (2008), 881. doi: 10.1515/FORUM.2008.042. Google Scholar

[24]

T. Tao, M. Visan and X. Zhang, Global well-posedness and scattering for the defocusing mass-critical nonlinear Schrödinger equation for radial data in high dimensions,, Duke Math. J., 140 (2007), 165. doi: 10.1215/S0012-7094-07-14015-8. Google Scholar

show all references

References:
[1]

P. Bégout and A. Vargas, Mass concentration phenomena for the $L^2$-critical nonlinear Schrödinger equation,, Trans. Amer. Math. Soc., 359 (2007), 5257. doi: 10.1090/S0002-9947-07-04250-X. Google Scholar

[2]

R. Carles and S. Keraani, On the role of quadratic oscillations in nonlinear Schrödinger equations. II. The $L^2$-critical case,, Trans. Amer. Math. Soc., 359 (2007), 33. doi: 10.1090/S0002-9947-06-03955-9. Google Scholar

[3]

T. Cazenave and F. B. Weissler, The Cauchy problem for the critical nonlinear Schrödinger equation in $H^s$,, Nonlinear Anal., 14 (1990), 807. doi: 10.1016/0362-546X(90)90023-A. Google Scholar

[4]

T. Cazenave, "Semilinear Schrödinger Equations,", Courant Lecture Notes in Mathematics, 10 (2003). Google Scholar

[5]

M. Christ and M. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation,, J. Funct. Anal., 100 (1991), 87. doi: 10.1016/0022-1236(91)90103-C. Google Scholar

[6]

J. Ginibre and G. Velo, Smoothing properties and retarded estimates for some dispersive evolution equations,, Comm. Math. Phys., 144 (1992), 163. doi: 10.1007/BF02099195. Google Scholar

[7]

J. Holmer and S. Roudenko, A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation,, Comm. Math. Phys., 282 (2008), 435. doi: 10.1007/s00220-008-0529-y. Google Scholar

[8]

M. Keel and T. Tao, Endpoint Strichartz estimates,, Amer. J. Math., 120 (1998), 955. doi: 10.1353/ajm.1998.0039. Google Scholar

[9]

C. E. Kenig and F. Merle, Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case,, Invent. Math., 166 (2006), 645. doi: 10.1007/s00222-006-0011-4. Google Scholar

[10]

C. E. Kenig and F. Merle, Scattering for $\dotH^{1/2)$ bounded solutions to the cubic, defocusing NLS in 3 dimensions,, Trans. Amer. Math. Soc. 362 (2010), 362 (2010), 1937. doi: 10.1090/S0002-9947-09-04722-9. Google Scholar

[11]

S. Keraani, On the defect of compactness for the Strichartz estimates for the Schrödinger equations,, J. Diff. Eq., 175 (2001), 353. doi: 10.1006/jdeq.2000.3951. Google Scholar

[12]

S. Keraani, On the blow up phenomenon of the critical nonlinear Schrödinger equation,, J. Funct. Anal., 235 (2006), 171. doi: 10.1016/j.jfa.2005.10.005. Google Scholar

[13]

R. Killip, T. Tao and M. Visan, The cubic nonlinear Schrödinger equation in two dimensions with radial data,, J. Eur. Math. Soc. (JEMS), 11 (2009), 1203. doi: 10.4171/JEMS/180. Google Scholar

[14]

R. Killip and M. Visan, Nonlinear Schrödinger equations at critical regularity,, to appear in proceedings of the Clay summer school, (2008). Google Scholar

[15]

R. Killip and M. Visan, The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher,, Amer. J. Math., 132 (2010), 361. doi: 10.1353/ajm.0.0107. Google Scholar

[16]

R. Killip and M. Visan, Energy-supercritical NLS: Critical $\dotH^s$-bounds imply scattering,, Comm. Partial Differential Equations, 35 (2010), 945. doi: 10.1080/03605301003717084. Google Scholar

[17]

R. Killip and M. Visan, The radial defocusing energy-supercritical nonlinear wave equation in all space dimensions,, Proc. Amer. Math. Soc., 139 (2011), 1805. doi: 10.1090/S0002-9939-2010-10615-9. Google Scholar

[18]

J. Lin and W. Strauss, Decay and scattering of solutions of a nonlinear Schrödinger equation,, J. Funct. Anal., 30 (1978), 245. doi: 10.1016/0022-1236(78)90073-3. Google Scholar

[19]

F. Merle and L. Vega, Compactness at blow-up time for $L^2$ solutions of the critical nonlinear Schrödinger equation in 2$D$,, Int. Math. Res. Not., (1998), 399. doi: 10.1155/S1073792898000270. Google Scholar

[20]

J. Murphy, Inter-critical NLS: Critical $\dotH^s$-bounds imply scattering,, , (). Google Scholar

[21]

S. Shao, Maximizers for the Strichartz inequalities and Sobolev-Strichartz inequalities for the Schrödinger equation,, Electron. J. Differential Equations, (2009). Google Scholar

[22]

R. S. Strichartz, Restriction of Fourier transform to quadratic surfaces and decay of solutions of wave equations,, Duke Math. J., 44 (1977), 705. doi: 10.1215/S0012-7094-77-04430-1. Google Scholar

[23]

T. Tao, M. Visan and X. Zhang, Minimal-mass blowup solutions of the mass-critical NLS,, Forum Math., 20 (2008), 881. doi: 10.1515/FORUM.2008.042. Google Scholar

[24]

T. Tao, M. Visan and X. Zhang, Global well-posedness and scattering for the defocusing mass-critical nonlinear Schrödinger equation for radial data in high dimensions,, Duke Math. J., 140 (2007), 165. doi: 10.1215/S0012-7094-07-14015-8. Google Scholar

[1]

Benjamin Dodson. Improved almost Morawetz estimates for the cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (1) : 127-140. doi: 10.3934/cpaa.2011.10.127

[2]

Mohamad Darwich. On the $L^2$-critical nonlinear Schrödinger Equation with a nonlinear damping. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2377-2394. doi: 10.3934/cpaa.2014.13.2377

[3]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[4]

Georgios Fotopoulos, Markus Harju, Valery Serov. Inverse fixed angle scattering and backscattering for a nonlinear Schrödinger equation in 2D. Inverse Problems & Imaging, 2013, 7 (1) : 183-197. doi: 10.3934/ipi.2013.7.183

[5]

Abdelwahab Bensouilah, Van Duong Dinh, Mohamed Majdoub. Scattering in the weighted $ L^2 $-space for a 2D nonlinear Schrödinger equation with inhomogeneous exponential nonlinearity. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2735-2755. doi: 10.3934/cpaa.2019122

[6]

Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807

[7]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[8]

Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for the $L^2$ critical nonlinear Schrödinger equation in higher dimensions. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1023-1041. doi: 10.3934/cpaa.2007.6.1023

[9]

Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for a periodic nonlinear Schrödinger equation in 1D and 2D. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 37-65. doi: 10.3934/dcds.2007.19.37

[10]

Alp Eden, Elİf Kuz. Almost cubic nonlinear Schrödinger equation: Existence, uniqueness and scattering. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1803-1823. doi: 10.3934/cpaa.2009.8.1803

[11]

Hiroyuki Hirayama, Mamoru Okamoto. Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity. Communications on Pure & Applied Analysis, 2016, 15 (3) : 831-851. doi: 10.3934/cpaa.2016.15.831

[12]

Satoshi Masaki. A sharp scattering condition for focusing mass-subcritical nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1481-1531. doi: 10.3934/cpaa.2015.14.1481

[13]

Chenmin Sun, Hua Wang, Xiaohua Yao, Jiqiang Zheng. Scattering below ground state of focusing fractional nonlinear Schrödinger equation with radial data. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2207-2228. doi: 10.3934/dcds.2018091

[14]

Myeongju Chae, Sunggeum Hong, Sanghyuk Lee. Mass concentration for the $L^2$-critical nonlinear Schrödinger equations of higher orders. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 909-928. doi: 10.3934/dcds.2011.29.909

[15]

Mingwen Fei, Huicheng Yin. Nodal solutions of 2-D critical nonlinear Schrödinger equations with potentials vanishing at infinity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2921-2948. doi: 10.3934/dcds.2015.35.2921

[16]

Yonggeun Cho, Gyeongha Hwang, Tohru Ozawa. Global well-posedness of critical nonlinear Schrödinger equations below $L^2$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1389-1405. doi: 10.3934/dcds.2013.33.1389

[17]

Zihua Guo, Yifei Wu. Global well-posedness for the derivative nonlinear Schrödinger equation in $H^{\frac 12} (\mathbb{R} )$. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 257-264. doi: 10.3934/dcds.2017010

[18]

Benjamin Dodson. Global well-posedness and scattering for the defocusing, cubic nonlinear Schrödinger equation when $n = 3$ via a linear-nonlinear decomposition. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1905-1926. doi: 10.3934/dcds.2013.33.1905

[19]

D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563

[20]

Miaomiao Niu, Zhongwei Tang. Least energy solutions for nonlinear Schrödinger equation involving the fractional Laplacian and critical growth. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3963-3987. doi: 10.3934/dcds.2017168

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]