February  2014, 34(2): 761-787. doi: 10.3934/dcds.2014.34.761

Semi-linear elliptic and elliptic-parabolic equations with Wentzell boundary conditions and $L^1$-data

1. 

Iowa State University, Department of Mathematics, 396 Carver Hall, Ames, IA 50011, United States

2. 

University of Puerto Rico, Rio Piedras Campus, Department of Mathematics, P.O. Box 70377, San Juan PR 00936-8377

Received  January 2013 Revised  May 2013 Published  August 2013

Let $Ω\subset\mathbb{R}^N$ ($N\ge 2$) be a bounded domain with a boundary $∂Ω$ of class $C^2$ and let $\alpha,\beta$ be maximal monotone graphs in $\mathbb{R}^2$ satisfying $\alpha(0)\cap\beta(0)\ni 0$. Given $f\in L^1(Ω)$ and $g\in L^1(∂Ω)$, we characterize the existence and uniqueness of weak solutions to the semi-linear elliptic equation $-\Delta u+\alpha(u)\ni f$ in $Ω$ with the nonlinear general Wentzell boundary conditions $-\Delta_{\Gamma} u+\frac{\partial u}{\partial\nu}+\beta(u)\ni g$ on $∂Ω$. We also show the well-posedness of the associated parabolic problem on the Banach space $L^1(Ω)\times L^1(∂Ω)$.
Citation: Paul Sacks, Mahamadi Warma. Semi-linear elliptic and elliptic-parabolic equations with Wentzell boundary conditions and $L^1$-data. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 761-787. doi: 10.3934/dcds.2014.34.761
References:
[1]

T. Aiki, Multi-dimensional two-phase Stefan problems with nonlinear dynamic boundary conditions,, in, 7 (1996), 1.   Google Scholar

[2]

F. Andreu, J. M. Mazón, S. Segura de León and J. Toledo, Quasi-linear elliptic and parabolic equations in $L^1$ with nonlinear boundary conditions,, Adv. Math. Sci. Appl., 7 (1997), 183.   Google Scholar

[3]

F. Andreu, N. Igbida, J. M. Mazón and J. Toledo, A degenerate elliptic-parabolic problem with nonlinear dynamical boundary conditions,, Interfaces Free Bound. 8 (2006), 8 (2006), 447.  doi: 10.4171/IFB/151.  Google Scholar

[4]

F. Andreu, N. Igbida, J. M. Mazón and J. Toledo, $L^ 1$ existence and uniqueness results for quasi-linear elliptic equations with nonlinear boundary conditions,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 61.  doi: 10.1016/j.anihpc.2005.09.009.  Google Scholar

[5]

F. Andreu, J. M. Mazón, S. Segura de León and J. Toledo, Existence and uniqueness for a degenerate parabolic equation with $L^1$-data,, Trans. Amer. Math. Soc., 351 (1999), 285.  doi: 10.1090/S0002-9947-99-01981-9.  Google Scholar

[6]

Ph. Bénilan, H. Brezis and M. G. Crandall, A semilinear equation in $L^1(\mathbbR^N)$,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2 (1975), 523.   Google Scholar

[7]

Ph. Bénilan and M. G. Crandall, Completely accretive operators,, in, 135 (1991), 41.   Google Scholar

[8]

Ph. Bénilan, M. G. Crandall and P. Sacks, Some $L^1$ existence and dependence results for semilinear elliptic equations under nonlinear boundary conditions,, Appl. Math. Optim., 17 (1988), 203.  doi: 10.1007/BF01448367.  Google Scholar

[9]

H. Brézis, Problémes unilatéraux,, J. Math. Pures Appl. (9), 51 (1972), 1.   Google Scholar

[10]

H. Brézis and A. Haraux, Image d'une somme d'opérateurs monotones et applications,, Israel J. Math., 23 (1976), 165.  doi: 10.1007/BF02756796.  Google Scholar

[11]

H. Brézis and W. A. Strauss, Semi-linear second-order elliptic equations in $L^1$,, J. Math. Soc. Japan, 25 (1973), 565.  doi: 10.2969/jmsj/02540565.  Google Scholar

[12]

M. G. Crandall, An introduction to evolution governed by accretive operators,, in, (1976), 131.   Google Scholar

[13]

M. G. Crandall, Nonlinear semigroups and evolution governed by accretive operators,, in, 45 (1986), 305.   Google Scholar

[14]

J. Crank, "Free and Moving Boundary Problems,", The Clarendon Press, (1987).   Google Scholar

[15]

R. Dautray and J.-L. Lions, "Mathematical Analysis and Numerical Methods for Sciences and Technology. Vol. 1. Physical Origins and Classical Methods,", Springer-Verlag, (1990).   Google Scholar

[16]

E. B. Davies, "Heat Kernels and Spectral Theory,", Cambridge Tracts in Mathematics, 92 (1989).  doi: 10.1017/CBO9780511566158.  Google Scholar

[17]

E. DiBenedetto and A. Friedman, The ill-posed Hele-Shaw model and the Stefan problem for supercooled water,, Trans. Amer. Math. Soc., 282 (1984), 183.  doi: 10.2307/1999584.  Google Scholar

[18]

P. Drábek and J. Milota, "Methods of Nonlinear Analysis. Applications to Differential Equations,", Birkhäuser Advanced Texts: Basler Lehrbücher [Birkhäuser Advanced Texts: Basel Textbooks], (2007).   Google Scholar

[19]

G. Duvaut and J.-L. Lions, "Inequalities in Mechanics and Physics,", Grundlehren der Mathematischen Wissenschaften, 219 (1976).   Google Scholar

[20]

L. C. Evans, Application of nonlinear semigroup theory to certain partial differential equations,, in, 40 (1978), 163.   Google Scholar

[21]

A. Favini, G. R. Goldstein, J. A. Goldstein, E. Obrecht and S. Romanelli, Elliptic operators with general Wentzell boundary conditions, analytic semigroups and the angle concavity theorem,, Math. Nachr., 283 (2010), 504.  doi: 10.1002/mana.200910086.  Google Scholar

[22]

A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The heat equation with nonlinear general Wentzell boundary condition,,, Adv. Differential Equations, 11 (2006), 481.   Google Scholar

[23]

C. G. Gal, G. Goldstein, J. A. Goldstein, S. Romanelli and M. Warma, Fredholm alternative, semilinear elliptic problems, and Wentzell boundary conditions,, preprint., ().   Google Scholar

[24]

C. G. Gal and M. Warma, Nonlinear elliptic boundary value problems at resonance with nonlinear Wentzell-Robin type boundary conditions,, preprint, ().   Google Scholar

[25]

N. Igbida and M. Kirane, A degenerate diffusion problem with dynamical boundary conditions,, Math. Ann., 323 (2002), 377.  doi: 10.1007/s002080100308.  Google Scholar

[26]

D. Kinderlehrer and G. Stampacchia, "An Introduction to Variational Inequalities and their Applications,", Pure and Applied Mathematics, 88 (1980).   Google Scholar

[27]

R. E. Showalter, "Monotone Operators in Banach Space and Nonlinear Partial Differential Equations,", Mathematical Surveys and Monographs, 49 (1997).   Google Scholar

[28]

M. Warma, An ultracontractivity property for semigroups generated by the $p$-Laplacian with nonlinear Wentzell-Robin boundary conditions,, Adv. Differential Equations, 14 (2009), 771.   Google Scholar

[29]

M. Warma, Regularity and well-posedness of some quasi-linear elliptic and parabolic problems with nonlinear general Wentzell boundary conditions on nonsmooth domains,, Nonlinear Analysis, 75 (2012), 5561.  doi: 10.1016/j.na.2012.05.004.  Google Scholar

[30]

M. Warma, Parabolic and elliptic problems with general Wentzell boundary conditions on Lipschitz domains,, Commun. Pure Appl. Anal., 12 (2013), 1881.  doi: 10.3934/cpaa.2013.12.1881.  Google Scholar

[31]

M. Warma, Semi linear parabolic equations with nonlinear general Wentzell boundary conditions,, Discrete Contin. Dynam. Systems, 33 (2013), 5493.  doi: 10.3934/dcds.2013.33.5493.  Google Scholar

show all references

References:
[1]

T. Aiki, Multi-dimensional two-phase Stefan problems with nonlinear dynamic boundary conditions,, in, 7 (1996), 1.   Google Scholar

[2]

F. Andreu, J. M. Mazón, S. Segura de León and J. Toledo, Quasi-linear elliptic and parabolic equations in $L^1$ with nonlinear boundary conditions,, Adv. Math. Sci. Appl., 7 (1997), 183.   Google Scholar

[3]

F. Andreu, N. Igbida, J. M. Mazón and J. Toledo, A degenerate elliptic-parabolic problem with nonlinear dynamical boundary conditions,, Interfaces Free Bound. 8 (2006), 8 (2006), 447.  doi: 10.4171/IFB/151.  Google Scholar

[4]

F. Andreu, N. Igbida, J. M. Mazón and J. Toledo, $L^ 1$ existence and uniqueness results for quasi-linear elliptic equations with nonlinear boundary conditions,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 61.  doi: 10.1016/j.anihpc.2005.09.009.  Google Scholar

[5]

F. Andreu, J. M. Mazón, S. Segura de León and J. Toledo, Existence and uniqueness for a degenerate parabolic equation with $L^1$-data,, Trans. Amer. Math. Soc., 351 (1999), 285.  doi: 10.1090/S0002-9947-99-01981-9.  Google Scholar

[6]

Ph. Bénilan, H. Brezis and M. G. Crandall, A semilinear equation in $L^1(\mathbbR^N)$,, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2 (1975), 523.   Google Scholar

[7]

Ph. Bénilan and M. G. Crandall, Completely accretive operators,, in, 135 (1991), 41.   Google Scholar

[8]

Ph. Bénilan, M. G. Crandall and P. Sacks, Some $L^1$ existence and dependence results for semilinear elliptic equations under nonlinear boundary conditions,, Appl. Math. Optim., 17 (1988), 203.  doi: 10.1007/BF01448367.  Google Scholar

[9]

H. Brézis, Problémes unilatéraux,, J. Math. Pures Appl. (9), 51 (1972), 1.   Google Scholar

[10]

H. Brézis and A. Haraux, Image d'une somme d'opérateurs monotones et applications,, Israel J. Math., 23 (1976), 165.  doi: 10.1007/BF02756796.  Google Scholar

[11]

H. Brézis and W. A. Strauss, Semi-linear second-order elliptic equations in $L^1$,, J. Math. Soc. Japan, 25 (1973), 565.  doi: 10.2969/jmsj/02540565.  Google Scholar

[12]

M. G. Crandall, An introduction to evolution governed by accretive operators,, in, (1976), 131.   Google Scholar

[13]

M. G. Crandall, Nonlinear semigroups and evolution governed by accretive operators,, in, 45 (1986), 305.   Google Scholar

[14]

J. Crank, "Free and Moving Boundary Problems,", The Clarendon Press, (1987).   Google Scholar

[15]

R. Dautray and J.-L. Lions, "Mathematical Analysis and Numerical Methods for Sciences and Technology. Vol. 1. Physical Origins and Classical Methods,", Springer-Verlag, (1990).   Google Scholar

[16]

E. B. Davies, "Heat Kernels and Spectral Theory,", Cambridge Tracts in Mathematics, 92 (1989).  doi: 10.1017/CBO9780511566158.  Google Scholar

[17]

E. DiBenedetto and A. Friedman, The ill-posed Hele-Shaw model and the Stefan problem for supercooled water,, Trans. Amer. Math. Soc., 282 (1984), 183.  doi: 10.2307/1999584.  Google Scholar

[18]

P. Drábek and J. Milota, "Methods of Nonlinear Analysis. Applications to Differential Equations,", Birkhäuser Advanced Texts: Basler Lehrbücher [Birkhäuser Advanced Texts: Basel Textbooks], (2007).   Google Scholar

[19]

G. Duvaut and J.-L. Lions, "Inequalities in Mechanics and Physics,", Grundlehren der Mathematischen Wissenschaften, 219 (1976).   Google Scholar

[20]

L. C. Evans, Application of nonlinear semigroup theory to certain partial differential equations,, in, 40 (1978), 163.   Google Scholar

[21]

A. Favini, G. R. Goldstein, J. A. Goldstein, E. Obrecht and S. Romanelli, Elliptic operators with general Wentzell boundary conditions, analytic semigroups and the angle concavity theorem,, Math. Nachr., 283 (2010), 504.  doi: 10.1002/mana.200910086.  Google Scholar

[22]

A. Favini, G. R. Goldstein, J. A. Goldstein and S. Romanelli, The heat equation with nonlinear general Wentzell boundary condition,,, Adv. Differential Equations, 11 (2006), 481.   Google Scholar

[23]

C. G. Gal, G. Goldstein, J. A. Goldstein, S. Romanelli and M. Warma, Fredholm alternative, semilinear elliptic problems, and Wentzell boundary conditions,, preprint., ().   Google Scholar

[24]

C. G. Gal and M. Warma, Nonlinear elliptic boundary value problems at resonance with nonlinear Wentzell-Robin type boundary conditions,, preprint, ().   Google Scholar

[25]

N. Igbida and M. Kirane, A degenerate diffusion problem with dynamical boundary conditions,, Math. Ann., 323 (2002), 377.  doi: 10.1007/s002080100308.  Google Scholar

[26]

D. Kinderlehrer and G. Stampacchia, "An Introduction to Variational Inequalities and their Applications,", Pure and Applied Mathematics, 88 (1980).   Google Scholar

[27]

R. E. Showalter, "Monotone Operators in Banach Space and Nonlinear Partial Differential Equations,", Mathematical Surveys and Monographs, 49 (1997).   Google Scholar

[28]

M. Warma, An ultracontractivity property for semigroups generated by the $p$-Laplacian with nonlinear Wentzell-Robin boundary conditions,, Adv. Differential Equations, 14 (2009), 771.   Google Scholar

[29]

M. Warma, Regularity and well-posedness of some quasi-linear elliptic and parabolic problems with nonlinear general Wentzell boundary conditions on nonsmooth domains,, Nonlinear Analysis, 75 (2012), 5561.  doi: 10.1016/j.na.2012.05.004.  Google Scholar

[30]

M. Warma, Parabolic and elliptic problems with general Wentzell boundary conditions on Lipschitz domains,, Commun. Pure Appl. Anal., 12 (2013), 1881.  doi: 10.3934/cpaa.2013.12.1881.  Google Scholar

[31]

M. Warma, Semi linear parabolic equations with nonlinear general Wentzell boundary conditions,, Discrete Contin. Dynam. Systems, 33 (2013), 5493.  doi: 10.3934/dcds.2013.33.5493.  Google Scholar

[1]

Li Ma, Lin Zhao. Regularity for positive weak solutions to semi-linear elliptic equations. Communications on Pure & Applied Analysis, 2008, 7 (3) : 631-643. doi: 10.3934/cpaa.2008.7.631

[2]

Jesus Idelfonso Díaz, Jean Michel Rakotoson. On very weak solutions of semi-linear elliptic equations in the framework of weighted spaces with respect to the distance to the boundary. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1037-1058. doi: 10.3934/dcds.2010.27.1037

[3]

Mahamadi Warma. Semi linear parabolic equations with nonlinear general Wentzell boundary conditions. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5493-5506. doi: 10.3934/dcds.2013.33.5493

[4]

Noriaki Yamazaki. Doubly nonlinear evolution equations associated with elliptic-parabolic free boundary problems. Conference Publications, 2005, 2005 (Special) : 920-929. doi: 10.3934/proc.2005.2005.920

[5]

Dagny Butler, Eunkyung Ko, Eun Kyoung Lee, R. Shivaji. Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2713-2731. doi: 10.3934/cpaa.2014.13.2713

[6]

Junichi Harada, Mitsuharu Ôtani. $H^2$-solutions for some elliptic equations with nonlinear boundary conditions. Conference Publications, 2009, 2009 (Special) : 333-339. doi: 10.3934/proc.2009.2009.333

[7]

Xia Huang. Stable weak solutions of weighted nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 293-305. doi: 10.3934/cpaa.2014.13.293

[8]

Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661

[9]

Shu Luan. On the existence of optimal control for semilinear elliptic equations with nonlinear neumann boundary conditions. Mathematical Control & Related Fields, 2017, 7 (3) : 493-506. doi: 10.3934/mcrf.2017018

[10]

Nguyen Thieu Huy, Vu Thi Ngoc Ha, Pham Truong Xuan. Boundedness and stability of solutions to semi-linear equations and applications to fluid dynamics. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2103-2116. doi: 10.3934/cpaa.2016029

[11]

Anne Mund, Christina Kuttler, Judith Pérez-Velázquez. Existence and uniqueness of solutions to a family of semi-linear parabolic systems using coupled upper-lower solutions. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5695-5707. doi: 10.3934/dcdsb.2019102

[12]

Peiying Chen. Existence and uniqueness of weak solutions for a class of nonlinear parabolic equations. Electronic Research Announcements, 2017, 24: 38-52. doi: 10.3934/era.2017.24.005

[13]

Ryuji Kajikiya, Daisuke Naimen. Two sequences of solutions for indefinite superlinear-sublinear elliptic equations with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1593-1612. doi: 10.3934/cpaa.2014.13.1593

[14]

Y. Kabeya, Eiji Yanagida, Shoji Yotsutani. Canonical forms and structure theorems for radial solutions to semi-linear elliptic problems. Communications on Pure & Applied Analysis, 2002, 1 (1) : 85-102. doi: 10.3934/cpaa.2002.1.85

[15]

Hung Le. Elliptic equations with transmission and Wentzell boundary conditions and an application to steady water waves in the presence of wind. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3357-3385. doi: 10.3934/dcds.2018144

[16]

Houda Mokrani. Semi-linear sub-elliptic equations on the Heisenberg group with a singular potential. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1619-1636. doi: 10.3934/cpaa.2009.8.1619

[17]

Wanwan Wang, Hongxia Zhang, Huyuan Chen. Remarks on weak solutions of fractional elliptic equations. Communications on Pure & Applied Analysis, 2016, 15 (2) : 335-340. doi: 10.3934/cpaa.2016.15.335

[18]

Zhijun Zhang. Large solutions of semilinear elliptic equations with a gradient term: existence and boundary behavior. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1381-1392. doi: 10.3934/cpaa.2013.12.1381

[19]

Takahiro Hashimoto. Existence and nonexistence of nontrivial solutions of some nonlinear fourth order elliptic equations. Conference Publications, 2003, 2003 (Special) : 393-402. doi: 10.3934/proc.2003.2003.393

[20]

Gaston N'Guerekata. On weak-almost periodic mild solutions of some linear abstract differential equations. Conference Publications, 2003, 2003 (Special) : 672-677. doi: 10.3934/proc.2003.2003.672

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]