Citation: |
[1] |
J. Burczak, T. Cieślak and C. Morales-Rodrigo, Global existence vs. blow-up in a fully parabolic quasilinear 1D Keller-Segel system, Nonlinear Anal., 75 (2012), 5215-5228.doi: 10.1016/j.na.2012.04.038. |
[2] |
Y.-S. Choi and Z.-A. Wang, Prevention of blow-up by fast diffusion in chemotaxis, J. Math. Anal. Appl., 362 (2010), 553-564.doi: 10.1016/j.jmaa.2009.08.012. |
[3] |
T. Cieślak and C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions, J. Differential Equations, 252 (2012), 5832-5851.doi: 10.1016/j.jde.2012.01.045. |
[4] |
T. Cieślak, Quasilinear nonuniformly parabolic system modelling chemotaxis, J. Math. Anal. Appl., 326 (2007), 1410-1426.doi: 10.1016/j.jmaa.2006.03.080. |
[5] |
T. Cieślak and C. Stinner, Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2, arXiv:1201.3270. |
[6] |
T. Cieślak and P. Laurençot, Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis system, Ann. I. H. Poincaré Anal. Non Linéaire, 27 (2010), 437-446.doi: 10.1016/j.anihpc.2009.11.016. |
[7] |
T. Cieślak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis, Nonlinearity, 21 (2008), 1057-1076.doi: 10.1088/0951-7715/21/5/009. |
[8] |
A. Friedman, "Partial Differential Equations," Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969. |
[9] |
M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 24 (1997), 633-683. |
[10] |
D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.doi: 10.1016/j.jde.2004.10.022. |
[11] |
D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions, European J. Appl. Math., 12 (2001), 159-177.doi: 10.1017/S0956792501004363. |
[12] |
T. Hillen and K. J. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding, Adv. Appl. Math., 26 (2001), 280-301.doi: 10.1006/aama.2001.0721. |
[13] |
T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.doi: 10.1007/s00285-008-0201-3. |
[14] |
W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824.doi: 10.2307/2153966. |
[15] |
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415.doi: 10.1016/0022-5193(70)90092-5. |
[16] |
R. Kowalczyk and Z. Szymańska, On the global existence of solutions to an aggregation model, J. Math. Anal. Appl., 343 (2008), 379-398.doi: 10.1016/j.jmaa.2008.01.005. |
[17] |
L. Nirenberg, An extended interpolation inequality, Ann. Sc. Norm. Super. Pisa (3), 20 (1966), 733-737. |
[18] |
K. Osaki, T. Tsujikawa, A. Yagi and M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal., 51 (2002), 119-144.doi: 10.1016/S0362-546X(01)00815-X. |
[19] |
K. Osaki and A. Yagi, Global existence for a chemotaxis-growth system in $\mathbbR^2$, Adv. Math. Sci. Appl., 12 (2002), 587-606. |
[20] |
K. Osaki and A. Yagi, Finite dimensional attractors for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44 (2001), 441-469. |
[21] |
K. J. Painter and T. Hillen, Volume-filling and quorum-sensing in models for chemosensitive movement, Can. Appl. Math. Q., 10 (2002), 501-543. |
[22] |
Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.doi: 10.1016/j.jde.2011.08.019. |
[23] |
J. I. Tello and M. Winkler, A chemotaxis system with logistic source, Comm. Partial Differential Equations, 32 (2007), 849-877.doi: 10.1080/03605300701319003. |
[24] |
M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.doi: 10.1016/j.jde.2010.02.008. |
[25] |
M. Winkler, Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity, Math. Nachr., 283 (2010), 1664-1673.doi: 10.1002/mana.200810838. |
[26] |
M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Comm. Partial Differential Equations, 35 (2010), 1516-1537.doi: 10.1080/03605300903473426. |
[27] |
M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, in press, arXiv:1112.4156. doi: 10.1016/j.matpur.2013.01.020. |
[28] |
M. Winkler, Does a 'volume-filling effect' always prevent chemotactic collapse?, Math. Methods Appl. Sci., 33 (2010), 12-24.doi: 10.1002/mma.1146. |
[29] |
M. Winkler and K. C. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect, Nonlinear Anal., 72 (2010), 1044-1064.doi: 10.1016/j.na.2009.07.045. |
[30] |
M. Winkler, Chemotaxis with logistic source: Very weak global solutions and their boundedness properties, J. Math. Anal. Appl., 348 (2008), 708-729.doi: 10.1016/j.jmaa.2008.07.071. |
[31] |
D. Wrzosek, Long time behaviour of solutions to a chemotaxis model with volume-filling effect, Proc. Roy. Soc. Edinburgh Sect. A, 136 (2006), 431-444.doi: 10.1017/S0308210500004649. |