Citation: |
[1] |
M. Abramowitz and I. A. Stegun, eds., "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables," Dover Publications, Inc., New York, 1966. |
[2] |
L. Arnold, "Random Dynamical Systems," Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998. |
[3] |
T. Caraballo, M. J. Garrido-Atienza, B. Schmalfuß and J. Valero, Asymptotic behavior of a stochastic semilinear dissipative functional equation without uniqueness of solutions, Discrete and Continuous Dynamical Systems, Series B, 14 (2010), 439-455.doi: 10.3934/dcdsb.2010.14.439. |
[4] |
C. Castaing and M. Valadier, "Convex Analysis and Measurable Multifunctions," Lecture Notes in Mathematics, Vol. 580, Springer-Verlag, Berlin, 1977. |
[5] |
Y. Chen, H. Gao, M. J. Garrido-Atienza and B. Schmalfuß, Random attractors for SPDEs driven by a fractional Brownian motion, in preperation. |
[6] |
P. Friz and N. Victoir, "Multidimensional Stochastic Processes as Rough Paths. Theory and Applications," Cambridge Studies of Advanced Mathematics, Vol. 120, Cambridge University Press, Cambridge, 2010. |
[7] |
M. J. Garrido-Atienza, K. Lu and B. Schmalfuss, Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion, Discrete and Continuous Dynamical Systems, Series B, 14 (2010), 473-493.doi: 10.3934/dcdsb.2010.14.473. |
[8] |
M. J. Garrido-Atienza, K. Lu and B. Schmalfuß, Random dynamical systems for stochastic evolution equations driven by a fractional Brownian motion with Hurst parameter in (1/3,1/2], in preparation. |
[9] |
M. J. Garrido-Atienza, K. Lu and B. Schmalfuß, Pathwise solutions of stochastic partial differential equations driven by a fractional Brownian motion with Hurst parameter in (1/3,1/2], arXiv1205.6735. |
[10] |
M. J. Garrido-Atienza, K. Lu and B. Schmalfuß, Compensated fractional derivatives and stochastic evolution equations, Comptes Rendus Mathématique, 350 (2012), 1037-1042.doi: 10.1016/j.crma.2012.11.007. |
[11] |
M. J. Garrido-Atienza, B. Maslowski and B. Schmalfuß, Random attractors for stochastic equations driven by a fractional Brownian motion, International Journal of Bifurcation and Chaos, 20 (2010), 2761-2782.doi: 10.1142/S0218127410027349. |
[12] |
M. J. Garrido-Atienza and B. Schmalfuß, Ergodicity of the infinite dimensional fractional Brownian motion, Journal of Dynamics and Differential Equations, 23 (2011), 671-681.doi: 10.1007/s10884-011-9222-5. |
[13] |
W. Grecksch and V. V. Anh, A parabolic stochastic differential equation with fractional Brownian motion input, Statist. Probab. Lett., 41 (1999), 337-346.doi: 10.1016/S0167-7152(98)00147-3. |
[14] |
M. Gubinelli, A. Lejay and S. Tindel, Young integrals and SPDEs, Potential Anal., 25 (2006), 307-326.doi: 10.1007/s11118-006-9013-5. |
[15] |
H. Kunita, "Stochastic Flows and Stochastic Differential Equations," Cambridge Studies in Advanced Mathematics, 24, Cambridge University Press, Cambridge, 1990. |
[16] |
T. Lyons and Z. Qian, "System Control and Rough Paths," Oxford Mathematical Monographs, Oxford Science Publications, Oxford University Press, Oxford, 2002.doi: 10.1093/acprof:oso/9780198506485.001.0001. |
[17] |
B. Maslowski and D. Nualart, Evolution equations driven by a fractional Brownian motion, J. Funct. Anal., 202 (2003), 277-305.doi: 10.1016/S0022-1236(02)00065-4. |
[18] |
B. Maslowski and B. Schmalfuß, Random dynamical systems and stationary solutions of differential equations driven by the fractional Brownian motion, Stochastic Anal. Appl., 22 (2004), 1577-1607.doi: 10.1081/SAP-200029498. |
[19] |
D. Nualart and A. Răçcanu, Differential equations driven by fractional Brownian motion, Collect. Math., 53 (2002), 55-81. |
[20] |
S. G. Samko, A. A. Kilbas and O. I. Marichev, "Fractional Integrals and Derivatives: Theory and Applications," Gordon and Breach Science Publishers, Yverdon, 1993. |
[21] |
S. Tindel, C. Tudor and F. Viens, Stochastic evolution equations with fractional Brownian motion, Probability Theory and Related Fields, 127 (2003), 186-204.doi: 10.1007/s00440-003-0282-2. |
[22] |
M. Zähle, Integration with respect to fractal functions and stochastic calculus. I, Probab. Theory Related Fields, 111 (1998), 333-374.doi: 10.1007/s004400050171. |