Citation: |
[1] |
G. Rodríguez-Blanco, On the Cauchy problem for the Camassa-Holm equation, Nonl. Anal., 46 (2001), 309-327.doi: 10.1016/S0362-546X(01)00791-X. |
[2] |
A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal., 183 (2007), 215-239.doi: 10.1007/s00205-006-0010-z. |
[3] |
A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation, Anal. Appl. (Singap.), 5 (2007), 1-27.doi: 10.1142/S0219530507000857. |
[4] |
R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661-1664.doi: 10.1103/PhysRevLett.71.1661. |
[5] |
A. Constantin, On the Cauchy problem for the periodic Camassa-Holm equation, J. Diff. Eqns., 141 (1997), 218-235.doi: 10.1006/jdeq.1997.3333. |
[6] |
A. Constantin, On the inverse spectral problem for the Camassa-Holm equation, J. Funct. Anal., 155 (1998), 352-363.doi: 10.1006/jfan.1997.3231. |
[7] |
A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach, Ann. Inst. Fourier (Grenoble), 50 (2000), 321-362.doi: 10.5802/aif.1757. |
[8] |
A. Constantin, On the scattering problem for the Camassa-Holm equation, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 457 (2001), 953-970.doi: 10.1098/rspa.2000.0701. |
[9] |
A. Constantin, Finite propagation speed for the Camassa-Holm equation, J. Math. Phys., 46 (2005), 023506, 4 pp.doi: 10.1063/1.1845603. |
[10] |
A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation, Ann. Scuola. Norm. Sup. Pisa Cl. Sci. (4), 26 (1998), 303-328. |
[11] |
A. Constantin and J. Escher, Well-posedness, global existence, and blow-up phenomena for a periodic quasi-linear hyperbolic equation, Comm. Pure Appl. Math., 51 (1998), 475-504.doi: 10.1002/(SICI)1097-0312(199805)51:5<475::AID-CPA2>3.0.CO;2-5. |
[12] |
A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229-243.doi: 10.1007/BF02392586. |
[13] |
A. Constantin and R. Ivanov, On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A, 372 (2008), 7129-7132.doi: 10.1016/j.physleta.2008.10.050. |
[14] |
A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Rat. Mech. Anal., 192 (2009), 165-186.doi: 10.1007/s00205-008-0128-2. |
[15] |
A. Constantin and H. P. McKean, A shallow water equation on the circle, Comm. Pure Appl. Math., 52 (1999), 949-982.doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D. |
[16] |
A. Constantin and W. A. Strauss, Stability of the Camassa-Holm solitons, J. Nonl. Sci., 12 (2002), 415-422.doi: 10.1007/s00332-002-0517-x. |
[17] |
R. Danchin, A few remarks on the Camassa-Holm equation, Diff. Integ. Eqns., 14 (2001), 953-988. |
[18] |
R. Danchin, "Fourier Analysis Method for PDEs," Lecture Notes, Vol. 14, November 2005. |
[19] |
R. Danchin, On the well-posedness of the incompressible density-dependent Euler equations in the $L^p$ framework, J. Diff. Eqns., 248 (2010), 2130-2170.doi: 10.1016/j.jde.2009.09.007. |
[20] |
A. Degasperis, D. D. Holm and A. N. I. Hone, A new integral equation with peakon solutions, Theoret. Math. Phys., 133 (2002), 1463-1474.doi: 10.1023/A:1021186408422. |
[21] |
A. Degasperis and M. Procesi, Asymptotic integrability, in "Symmetry and Perturbation Theory" (Rome, 1998), World Sci. Publ., River Edge, NJ, (1999), 23-37. |
[22] |
H. R. Dullin, G. A. Gottwald and D. D. Holm, An integrable shallow water equation with linear and nonlinear dispersion, Phys. Rev. Lett., 87 (2001), 194501, 4 pp.doi: 10.1103/PhysRevLett.87.194501. |
[23] |
H. R. Dullin, G. A. Gottwald and D. D. Holm, Camassa-Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves, Fluid. Dyn. Res., 33 (2003), 73-95.doi: 10.1016/S0169-5983(03)00046-7. |
[24] |
J. Escher, Y. Liu and Z. Yin, Global weak solutions and blow-up structure for the Degasperis-Procesi equation, J. Funct. Anal., 241 (2006), 457-485.doi: 10.1016/j.jfa.2006.03.022. |
[25] |
J. Escher, Y. Liu and Z. Yin, Shock waves and blow-up phenomena for the periodic Degasperis-Procesi equation, Indiana Univ. Math. J., 56 (2007), 87-117.doi: 10.1512/iumj.2007.56.3040. |
[26] |
J. Escher and Z. Yin, On the initial boundary value problems for the Degasperis-Procesi equation, Phys. Lett. A, 368 (2007), 69-76.doi: 10.1016/j.physleta.2007.03.073. |
[27] |
A. Fokas, B. Fuchssteiner, Symplectic structures, their Bäklund transformations and hereditray symmetries, Physica D., 4 (1981/82), 47-66. doi: 10.1016/0167-2789(81)90004-X. |
[28] |
X. Geng and B. Xue, An extension of integrable peakon equations with cubic nonlinearity, Nonlinearity, 22 (2009), 1847-1856.doi: 10.1088/0951-7715/22/8/004. |
[29] |
D. Henry, Infinite propagation speed for the Degasperis-Procesi equation, J. Math. Anal. Appl., 311 (2005), 755-759.doi: 10.1016/j.jmaa.2005.03.001. |
[30] |
D. Henry, Compactly supported solutions of the Camassa-Holm equation, J. Nonlinear Math. Phys., 12 (2005), 342-347.doi: 10.2991/jnmp.2005.12.3.3. |
[31] |
D. Henry, Persistence properties for a family of nonlinear partial differential equations, Nonl. Anal., 70 (2009), 1565-1573.doi: 10.1016/j.na.2008.02.104. |
[32] |
D. Henry, Persistence properties for the Degasperis-Procesi equation, J. Hyper. Diff. Eq., 5 (2008), 99-111.doi: 10.1142/S0219891608001404. |
[33] |
D. Henry, Infinite propagation speed for a two component Camassa-Holm equation, Discr. Contin. Dyn. Syst. Ser. B., 12 (2009), 597-606.doi: 10.3934/dcdsb.2009.12.597. |
[34] |
A. A. Himonas and C. Holliman, On well-posedness of the Degasperis-Procesi equation, Discr. Contin. Dyn. Syst., 31 (2011), 469-488.doi: 10.3934/dcds.2011.31.469. |
[35] |
A. A. Himonas and G. Misio lek, The Cauchy problem for an integrable shallow water equation, Diff. Int. Eqns., 14 (2001), 821-831. |
[36] |
A. A. Himonas, G. Misio lek, G. Ponce and Y. Zhou, Persistence properties and unique continuation of solutions of the Camassa-Holm equation, Comm. Math. Phys., 271 (2007), 511-522.doi: 10.1007/s00220-006-0172-4. |
[37] |
H. Holden and X. Raynaud, Dissipative Solutions for the Camassa-Holm equation, Discr. Contin. Dyn. Syst. Ser., 24 (2009), 1047-1112.doi: 10.3934/dcds.2009.24.1047. |
[38] |
A. N. W. Hone, H. Lundmark and J. Szmigielski, Explicit multipeakon solutions of Novikov's cubically nonlinear integrable Camassa-Holm equation, Dyn. Partial Diff. Eqns., 6 (2009), 253-289. |
[39] |
A. N. W. Hone and J. P. Wang, Prolongation algebras and Hamiltonian operators for peakon equations, Inverse Problems, 19 (2003), 129-145.doi: 10.1088/0266-5611/19/1/307. |
[40] |
A. N. W. Hone and J. P. Wang, Integrable peakon equations with cubic nonlinearity, J. Phys. A, 41 (2008), 372002, 10 pp.doi: 10.1088/1751-8113/41/37/372002. |
[41] |
R. Ivanov, Extended Camassa-Holm hierarchy and conserved quantities, Z. Naturforsch. A, 61 (2006), 133-138. |
[42] |
Z. H. Jiang and L. D. Ni, Blow-up phenomenon for the integrable Novikov equation, J. Math. Appl. Anal., 385 (2012), 551-558.doi: 10.1016/j.jmaa.2011.06.067. |
[43] |
S. Y. Lai and Y. H. Wu, The local well-posedness and existence of weak solutions for a generalized Camassa-Holm equation, J. Diff. Eqns., 248 (2010), 2038-2063.doi: 10.1016/j.jde.2010.01.008. |
[44] |
J. Lenells, Conservation laws of the Camassa-Holm equation, J. Phys. A, 38 (2005), 869-880.doi: 10.1088/0305-4470/38/4/007. |
[45] |
Y. A. Li and P. J. Olver, Well-posedness and blow-up solutions for an integrable nonlinearly dispersive model wave equation, J. Diff. Eqns., 162 (2000), 27-63.doi: 10.1006/jdeq.1999.3683. |
[46] |
Y. Liu and Z. Yin, Global existence and blow-up phenomena for the Degasperis-Procesi equation, Comm. Math. Phys., 267 (2006), 801-820.doi: 10.1007/s00220-006-0082-5. |
[47] |
H. P. McKean, Breakdown of a shallow water equation, Asian J. Math., 2 (1998), 867-874. |
[48] |
Y. S. Mi and C. L. Mu, On the Cauchy problem for the modified Novikov equation with peakon solutions, J. Diff. Eqns., 254 (2013), 961-982.doi: 10.1016/j.jde.2012.09.016. |
[49] |
O. Mustafa, A note on the Degasperis-Procesi equation, J. Nonl. Math. Phys., 12 (2005), 10-14.doi: 10.2991/jnmp.2005.12.1.2. |
[50] |
L. D. Ni and Y. Zhou, Well-posedness and persistence properties for the Novikov equation, J. Diff. Eqns., 250 (2011), 3002-3021.doi: 10.1016/j.jde.2011.01.030. |
[51] |
V. S. Novikov, Generalizations of the Camassa-Holm equation, J. Phys. A, 42 (2009), 342002, 14 pp.doi: 10.1088/1751-8113/42/34/342002. |
[52] |
F. Tiǧlay, The periodic Cauchy problem for Novikov's equation, Int. Math. Res. Notices IMRN, (2011), 4633-4648.doi: 10.1093/imrn/rnq267. |
[53] |
M. Vishik, Hydrodynamics in Besov spaces, Arch. Rat. Mech. Anal., 145 (1998), 197-214.doi: 10.1007/s002050050128. |
[54] |
W. Walter, "Differential and Integral Inequalities," Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 55, Springer-Verlag, New York-Berlin, 1970. |
[55] |
Z. Xin and P. Zhang, On the weak solution to a shallow water equation, Comm. Pure Appl. Math., 53 (2000), 1411-1433.doi: 10.1002/1097-0312(200011)53:11<1411::AID-CPA4>3.0.CO;2-5. |
[56] |
K. Yan and Z. Yin, On the Cauchy problem for a two-component Degasperis-Procesi system, J. Diff. Eqns., 252 (2012), 2131-2159.doi: 10.1016/j.jde.2011.08.003. |
[57] |
W. Yan, Y. S. Li and Y. M. Zhang, The Cauchy problem for the integrable Novikov equation, J. Diff. Eqns., 253 (2012), 298-318.doi: 10.1016/j.jde.2012.03.015. |
[58] |
W. Yan, Y. S. Li and Y. M. Zhang, The Cauchy problem for the Novikov equation, Nonlinear Differ. Equ. Appl., 20 (2013), 1157-1169.doi: 10.1007/s00030-012-0202-1. |
[59] |
W. Yan, Y. S. Li and Y. M. Zhang, Global existence and blow-up phenomena for the weakly dissipative Novikov equation, Nonl. Anal., 75 (2012), 2464-2473.doi: 10.1016/j.na.2011.10.044. |
[60] |
W. Yan, Y. S. Li and Y. M. Zhang, The Cauchy problem for the generalized Camassa-Holm equation, to appear. |
[61] |
Z. Yin, Well-posedness, blowup, and global existence for an integrable shallow water equation, Discr. Contin. Dyn. Syst. Ser., 11 (2004), 393-411.doi: 10.3934/dcds.2004.11.393. |
[62] |
Z. Yin, Global existence for a new periodic integrable equation, J. Math. Anal. Appl., 283 (2003), 129-139.doi: 10.1016/S0022-247X(03)00250-6. |
[63] |
Z. Yin, On the Cauchy problem for an integrable equation with peakon solutions, Illinois J. Math., 47 (2003), 649-666. |
[64] |
Z. Yin, Global solutions to a new integrable equation with peakons, Indiana Univ. Math. J., 53 (2004), 1189-1209.doi: 10.1512/iumj.2004.53.2479. |
[65] |
Z. Yin, Global weak solutions for a new periodic integrable equation with peakon solutions, J. Funct. Anal., 212 (2004), 182-194.doi: 10.1016/j.jfa.2003.07.010. |