- Previous Article
- DCDS Home
- This Issue
-
Next Article
Well-posedness, blow-up phenomena and global existence for the generalized $b$-equation with higher-order nonlinearities and weak dissipation
Topological quasi-stability of partially hyperbolic diffeomorphisms under random perturbations
1. | College of Mathematics and Information Science, and Hebei Key Laboratory of Computational Mathematics and Applications, Hebei Normal University, Shijiazhuang, 050024, China |
References:
[1] |
L. Arnold, "Random Dynamical Systems," Springer Monographs in Mathematics, Springer-Verlag, New York, 1998. |
[2] |
M. Brin and Ya. Pesin, Partially hyperbolic dynamical systems, Math. USSR-Izv., 8 (1974), 177-218.
doi: 10.1070/IM1974v008n01ABEH002101. |
[3] |
A. Fathi, M. Herman and J. Yoccoz, A proof of Pesin's stable manifold theorem, in "Geometric Dynamics," Lect. Notes in Math., 1007, Springer-Verlag, Berlin-Heidelberg, (1983), 177-215.
doi: 10.1007/BFb0061417. |
[4] |
M. Hirsch, C. Pugh and M. Shub, Invariant manifolds, Bull. Amer. Math. Soc., 76 (1970), 1015-1019.
doi: 10.1090/S0002-9904-1970-12537-X. |
[5] |
M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds," Lect. Notes in Math., 583, Springer-Verlag, Berlin-New York, 1977. |
[6] |
H. Hu and Y. Zhu, Quasi-stability of partially hyperbolic diffeomorphisms,, to appear in Tran. Amer. Math. Soc., ().
|
[7] |
Y. Kifer, "Random Perturbations of Dynamical Systems," Progress in Probability and Statistics, 16, Birkhäuser Boston, Inc., Boston, MA, 1988.
doi: 10.1007/978-1-4615-8181-9. |
[8] |
P.-D. Liu, Dynamics of random transformations: Smooth ergodic theory, Ergo. Theo. Dyn. Syst., 21 (2001), 1279-1319.
doi: 10.1017/S0143385701001614. |
[9] |
P.-D. Liu, Random perturbations of Axiom A basic sets, J. Stat. Phys., 90 (1998), 467-490.
doi: 10.1023/A:1023280407906. |
[10] |
P.-D. Liu and M. Qian, "Smooth Ergodic Theory of Random Dynamical Systems," Lect. Notes in Math., 1606, Springer-Verlag, Berlin, 1995. |
[11] |
Q. X. Liu and P. D. Liu, Topological stability of hyperbolic sets of flows under random perturbations, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 117-127.
doi: 10.3934/dcdsb.2010.13.117. |
[12] |
Ya. Pesin, "Lectures on Partial Hyperbolicity and Stable Ergodicity," Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2004.
doi: 10.4171/003. |
[13] |
P. Walters, Anosov diffeomorphisms are topologically stable, Topology, 9 (1970), 71-78.
doi: 10.1016/0040-9383(70)90051-0. |
[14] |
Y. Zhu, J. Zhang and L. He, Shadowing and inverse shadowing for $C^1$ endomorphisms, Acta Mathematica Sinica (Engl. Ser.), 22 (2006), 1321-1328.
doi: 10.1007/s10114-005-0739-6. |
show all references
References:
[1] |
L. Arnold, "Random Dynamical Systems," Springer Monographs in Mathematics, Springer-Verlag, New York, 1998. |
[2] |
M. Brin and Ya. Pesin, Partially hyperbolic dynamical systems, Math. USSR-Izv., 8 (1974), 177-218.
doi: 10.1070/IM1974v008n01ABEH002101. |
[3] |
A. Fathi, M. Herman and J. Yoccoz, A proof of Pesin's stable manifold theorem, in "Geometric Dynamics," Lect. Notes in Math., 1007, Springer-Verlag, Berlin-Heidelberg, (1983), 177-215.
doi: 10.1007/BFb0061417. |
[4] |
M. Hirsch, C. Pugh and M. Shub, Invariant manifolds, Bull. Amer. Math. Soc., 76 (1970), 1015-1019.
doi: 10.1090/S0002-9904-1970-12537-X. |
[5] |
M. Hirsch, C. Pugh and M. Shub, "Invariant Manifolds," Lect. Notes in Math., 583, Springer-Verlag, Berlin-New York, 1977. |
[6] |
H. Hu and Y. Zhu, Quasi-stability of partially hyperbolic diffeomorphisms,, to appear in Tran. Amer. Math. Soc., ().
|
[7] |
Y. Kifer, "Random Perturbations of Dynamical Systems," Progress in Probability and Statistics, 16, Birkhäuser Boston, Inc., Boston, MA, 1988.
doi: 10.1007/978-1-4615-8181-9. |
[8] |
P.-D. Liu, Dynamics of random transformations: Smooth ergodic theory, Ergo. Theo. Dyn. Syst., 21 (2001), 1279-1319.
doi: 10.1017/S0143385701001614. |
[9] |
P.-D. Liu, Random perturbations of Axiom A basic sets, J. Stat. Phys., 90 (1998), 467-490.
doi: 10.1023/A:1023280407906. |
[10] |
P.-D. Liu and M. Qian, "Smooth Ergodic Theory of Random Dynamical Systems," Lect. Notes in Math., 1606, Springer-Verlag, Berlin, 1995. |
[11] |
Q. X. Liu and P. D. Liu, Topological stability of hyperbolic sets of flows under random perturbations, Discrete Contin. Dyn. Syst. Ser. B, 13 (2010), 117-127.
doi: 10.3934/dcdsb.2010.13.117. |
[12] |
Ya. Pesin, "Lectures on Partial Hyperbolicity and Stable Ergodicity," Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2004.
doi: 10.4171/003. |
[13] |
P. Walters, Anosov diffeomorphisms are topologically stable, Topology, 9 (1970), 71-78.
doi: 10.1016/0040-9383(70)90051-0. |
[14] |
Y. Zhu, J. Zhang and L. He, Shadowing and inverse shadowing for $C^1$ endomorphisms, Acta Mathematica Sinica (Engl. Ser.), 22 (2006), 1321-1328.
doi: 10.1007/s10114-005-0739-6. |
[1] |
Jérôme Buzzi, Todd Fisher. Entropic stability beyond partial hyperbolicity. Journal of Modern Dynamics, 2013, 7 (4) : 527-552. doi: 10.3934/jmd.2013.7.527 |
[2] |
Luci H. Fatori, Marcio A. Jorge Silva, Vando Narciso. Quasi-stability property and attractors for a semilinear Timoshenko system. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6117-6132. doi: 10.3934/dcds.2016067 |
[3] |
Moncef Aouadi, Alain Miranville. Quasi-stability and global attractor in nonlinear thermoelastic diffusion plate with memory. Evolution Equations and Control Theory, 2015, 4 (3) : 241-263. doi: 10.3934/eect.2015.4.241 |
[4] |
Baowei Feng. On a semilinear Timoshenko-Coleman-Gurtin system: Quasi-stability and attractors. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 4729-4751. doi: 10.3934/dcds.2017203 |
[5] |
Radosław Czaja. Pullback attractors via quasi-stability for non-autonomous lattice dynamical systems. Discrete and Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021276 |
[6] |
Sergey Kryzhevich, Sergey Tikhomirov. Partial hyperbolicity and central shadowing. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 2901-2909. doi: 10.3934/dcds.2013.33.2901 |
[7] |
Jason S. Howell, Irena Lasiecka, Justin T. Webster. Quasi-stability and exponential attractors for a non-gradient system---applications to piston-theoretic plates with internal damping. Evolution Equations and Control Theory, 2016, 5 (4) : 567-603. doi: 10.3934/eect.2016020 |
[8] |
Qiuxia Liu, Peidong Liu. Topological stability of hyperbolic sets of flows under random perturbations. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 117-127. doi: 10.3934/dcdsb.2010.13.117 |
[9] |
Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012 |
[10] |
Federico Rodriguez Hertz, María Alejandra Rodriguez Hertz, Raúl Ures. Partial hyperbolicity and ergodicity in dimension three. Journal of Modern Dynamics, 2008, 2 (2) : 187-208. doi: 10.3934/jmd.2008.2.187 |
[11] |
Yakov Pesin. On the work of Dolgopyat on partial and nonuniform hyperbolicity. Journal of Modern Dynamics, 2010, 4 (2) : 227-241. doi: 10.3934/jmd.2010.4.227 |
[12] |
Andy Hammerlindl. Partial hyperbolicity on 3-dimensional nilmanifolds. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3641-3669. doi: 10.3934/dcds.2013.33.3641 |
[13] |
Eleonora Catsigeras, Xueting Tian. Dominated splitting, partial hyperbolicity and positive entropy. Discrete and Continuous Dynamical Systems, 2016, 36 (9) : 4739-4759. doi: 10.3934/dcds.2016006 |
[14] |
Rafael Potrie. Partial hyperbolicity and foliations in $\mathbb{T}^3$. Journal of Modern Dynamics, 2015, 9: 81-121. doi: 10.3934/jmd.2015.9.81 |
[15] |
Jinhu Xu, Yicang Zhou. Global stability of a multi-group model with vaccination age, distributed delay and random perturbation. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1083-1106. doi: 10.3934/mbe.2015.12.1083 |
[16] |
Marcelo Sobottka. Topological quasi-group shifts. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 77-93. doi: 10.3934/dcds.2007.17.77 |
[17] |
Qingshan Yang, Xuerong Mao. Stochastic dynamics of SIRS epidemic models with random perturbation. Mathematical Biosciences & Engineering, 2014, 11 (4) : 1003-1025. doi: 10.3934/mbe.2014.11.1003 |
[18] |
Figen Özpinar, Fethi Bin Muhammad Belgacem. The discrete homotopy perturbation Sumudu transform method for solving partial difference equations. Discrete and Continuous Dynamical Systems - S, 2019, 12 (3) : 615-624. doi: 10.3934/dcdss.2019039 |
[19] |
Teemu Tyni, Valery Serov. Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line. Inverse Problems and Imaging, 2019, 13 (1) : 159-175. doi: 10.3934/ipi.2019009 |
[20] |
Florian Dorsch, Hermann Schulz-Baldes. Random Möbius dynamics on the unit disc and perturbation theory for Lyapunov exponents. Discrete and Continuous Dynamical Systems - B, 2022, 27 (2) : 945-976. doi: 10.3934/dcdsb.2021076 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]