-
Previous Article
Computing of B-series by automatic differentiation
- DCDS Home
- This Issue
-
Next Article
Preface
A Gaussian quadrature rule for oscillatory integrals on a bounded interval
1. | Dept. Computer Science, University of Leuven, Belgium, BE-3001 Heverlee, Belgium, Belgium, Belgium, Belgium |
References:
[1] |
A. Asheim and D. Huybrechs, Gaussian quadrature for oscillatory integral transforms,, IMA J. Numer. Anal, (2013).
doi: 10.1093/imanum/drs060. |
[2] |
P. Bleher and A. Its, Asymptotics of the partition function of a random matrix model,, in, 55 (2005), 1943.
doi: 10.5802/aif.2147. |
[3] |
L. Filon, On a quadrature formula for trigonometric integrals,, Proc. Roy. Soc. Edinburgh, 49 (1928), 38. Google Scholar |
[4] |
W. Gautschi, "Orthogonal Polynomials: Computation and Approximation,", Oxford University Press, (2004).
|
[5] |
D. Huybrechs and S. Olver, Superinterpolation in highly oscillatory quadrature,, Found. Comput. Math, 12 (2012), 203.
doi: 10.1007/s10208-011-9102-8. |
[6] |
D. Huybrechs and S. Vandewalle, On the evaluation of highly oscillatory integrals by analytic continuation,, SIAM J. Numer. Anal., 44 (2006), 1026.
doi: 10.1137/050636814. |
[7] |
A. Iserles, Think globally, act locally: Solving highly-oscillatory ordinary differential equations,, Appl. Numer. Math., 43 (2002), 145.
doi: 10.1016/S0168-9274(02)00122-8. |
[8] |
A. Iserles, On the numerical quadrature of highly-oscillating integrals I: Fourier transforms,, IMA J. Numer. Anal., 24 (2004), 365.
doi: 10.1093/imanum/24.3.365. |
[9] |
A. Iserles and S. Nørsett, Efficient quadrature of highly oscillatory integrals using derivatives,, Proc. R. Soc. A, 461 (2005), 1383.
doi: 10.1098/rspa.2004.1401. |
[10] |
A. Iserles and S. P. Nørsett, On quadrature methods for highly oscillatory integrals and their implementation,, BIT, 44 (2004), 755.
doi: 10.1007/s10543-004-5243-3. |
[11] |
A. Iserles and S. P. Nørsett, On the computation of highly oscillatory multivariate integrals with stationary points,, BIT, 46 (2006), 549.
doi: 10.1007/s10543-006-0071-2. |
[12] |
A. Iserles and S. P. Nørsett, Quadrature methods for multivariate highly oscillatory integrals using derivatives,, Math. Comp., 75 (2006), 1233.
doi: 10.1090/S0025-5718-06-01854-0. |
[13] |
L. G. Ixaru and B. Paternoster, A Gauss quadrature rule for oscillatory integrands,, Comput. Phys. Commun., 133 (2001), 177.
doi: 10.1016/S0010-4655(00)00173-9. |
[14] |
V. Ledoux and M. Van Daele, Interpolatory quadrature rules for oscillatory integrals,, J. Sci. Comput., 53 (2012), 586.
doi: 10.1007/s10915-012-9589-4. |
[15] |
D. Levin, Fast integration of rapidly oscillatory functions,, J. Comput. Appl. Math., 67 (1996), 95.
doi: 10.1016/0377-0427(94)00118-9. |
[16] |
J. L. López and N. M. Temme, Two-point Taylor expansions of analytic functions,, Stud. Appl. Math., 109 (2002), 297.
doi: 10.1111/1467-9590.00225. |
[17] |
F. Olver, D. Lozier, R. Boisvert and C. Clark, "NIST Handbook of Mathematical Functions,", Cambridge University Press, (2010).
|
[18] |
S. Olver, Moment-free numerical integration of highly oscillatory functions,, IMA J. Numer. Anal., 26 (2006), 213.
doi: 10.1093/imanum/dri040. |
[19] |
S. Olver, Fast, numerically stable computation of oscillatory integrals with stationary points,, BIT, 50 (2010), 149.
doi: 10.1007/s10543-010-0251-y. |
show all references
References:
[1] |
A. Asheim and D. Huybrechs, Gaussian quadrature for oscillatory integral transforms,, IMA J. Numer. Anal, (2013).
doi: 10.1093/imanum/drs060. |
[2] |
P. Bleher and A. Its, Asymptotics of the partition function of a random matrix model,, in, 55 (2005), 1943.
doi: 10.5802/aif.2147. |
[3] |
L. Filon, On a quadrature formula for trigonometric integrals,, Proc. Roy. Soc. Edinburgh, 49 (1928), 38. Google Scholar |
[4] |
W. Gautschi, "Orthogonal Polynomials: Computation and Approximation,", Oxford University Press, (2004).
|
[5] |
D. Huybrechs and S. Olver, Superinterpolation in highly oscillatory quadrature,, Found. Comput. Math, 12 (2012), 203.
doi: 10.1007/s10208-011-9102-8. |
[6] |
D. Huybrechs and S. Vandewalle, On the evaluation of highly oscillatory integrals by analytic continuation,, SIAM J. Numer. Anal., 44 (2006), 1026.
doi: 10.1137/050636814. |
[7] |
A. Iserles, Think globally, act locally: Solving highly-oscillatory ordinary differential equations,, Appl. Numer. Math., 43 (2002), 145.
doi: 10.1016/S0168-9274(02)00122-8. |
[8] |
A. Iserles, On the numerical quadrature of highly-oscillating integrals I: Fourier transforms,, IMA J. Numer. Anal., 24 (2004), 365.
doi: 10.1093/imanum/24.3.365. |
[9] |
A. Iserles and S. Nørsett, Efficient quadrature of highly oscillatory integrals using derivatives,, Proc. R. Soc. A, 461 (2005), 1383.
doi: 10.1098/rspa.2004.1401. |
[10] |
A. Iserles and S. P. Nørsett, On quadrature methods for highly oscillatory integrals and their implementation,, BIT, 44 (2004), 755.
doi: 10.1007/s10543-004-5243-3. |
[11] |
A. Iserles and S. P. Nørsett, On the computation of highly oscillatory multivariate integrals with stationary points,, BIT, 46 (2006), 549.
doi: 10.1007/s10543-006-0071-2. |
[12] |
A. Iserles and S. P. Nørsett, Quadrature methods for multivariate highly oscillatory integrals using derivatives,, Math. Comp., 75 (2006), 1233.
doi: 10.1090/S0025-5718-06-01854-0. |
[13] |
L. G. Ixaru and B. Paternoster, A Gauss quadrature rule for oscillatory integrands,, Comput. Phys. Commun., 133 (2001), 177.
doi: 10.1016/S0010-4655(00)00173-9. |
[14] |
V. Ledoux and M. Van Daele, Interpolatory quadrature rules for oscillatory integrals,, J. Sci. Comput., 53 (2012), 586.
doi: 10.1007/s10915-012-9589-4. |
[15] |
D. Levin, Fast integration of rapidly oscillatory functions,, J. Comput. Appl. Math., 67 (1996), 95.
doi: 10.1016/0377-0427(94)00118-9. |
[16] |
J. L. López and N. M. Temme, Two-point Taylor expansions of analytic functions,, Stud. Appl. Math., 109 (2002), 297.
doi: 10.1111/1467-9590.00225. |
[17] |
F. Olver, D. Lozier, R. Boisvert and C. Clark, "NIST Handbook of Mathematical Functions,", Cambridge University Press, (2010).
|
[18] |
S. Olver, Moment-free numerical integration of highly oscillatory functions,, IMA J. Numer. Anal., 26 (2006), 213.
doi: 10.1093/imanum/dri040. |
[19] |
S. Olver, Fast, numerically stable computation of oscillatory integrals with stationary points,, BIT, 50 (2010), 149.
doi: 10.1007/s10543-010-0251-y. |
[1] |
Avetik Arakelyan, Henrik Shahgholian, Jyotshana V. Prajapat. Two-and multi-phase quadrature surfaces. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2023-2045. doi: 10.3934/cpaa.2017099 |
[2] |
Da Xu. Numerical solutions of viscoelastic bending wave equations with two term time kernels by Runge-Kutta convolution quadrature. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2389-2416. doi: 10.3934/dcdsb.2017122 |
[3] |
Sanjay Khattri. Another note on some quadrature based three-step iterative methods for non-linear equations. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 549-555. doi: 10.3934/naco.2013.3.549 |
[4] |
Graham W. Alldredge, Ruo Li, Weiming Li. Approximating the $M_2$ method by the extended quadrature method of moments for radiative transfer in slab geometry. Kinetic & Related Models, 2016, 9 (2) : 237-249. doi: 10.3934/krm.2016.9.237 |
[5] |
Julian Koellermeier, Roman Pascal Schaerer, Manuel Torrilhon. A framework for hyperbolic approximation of kinetic equations using quadrature-based projection methods. Kinetic & Related Models, 2014, 7 (3) : 531-549. doi: 10.3934/krm.2014.7.531 |
[6] |
Philippe Chartier, Norbert J. Mauser, Florian Méhats, Yong Zhang. Solving highly-oscillatory NLS with SAM: Numerical efficiency and long-time behavior. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1327-1349. doi: 10.3934/dcdss.2016053 |
[7] |
Claude Le Bris, Frédéric Legoll. Integrators for highly oscillatory Hamiltonian systems: An homogenization approach. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 347-373. doi: 10.3934/dcdsb.2010.13.347 |
[8] |
Emmanuel Frénod, Sever A. Hirstoaga, Eric Sonnendrücker. An exponential integrator for a highly oscillatory vlasov equation. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 169-183. doi: 10.3934/dcdss.2015.8.169 |
[9] |
Hermann Brunner. On Volterra integral operators with highly oscillatory kernels. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 915-929. doi: 10.3934/dcds.2014.34.915 |
[10] |
Yahong Peng, Yaguang Wang. Reflection of highly oscillatory waves with continuous oscillatory spectra for semilinear hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1293-1306. doi: 10.3934/dcds.2009.24.1293 |
[11] |
Yoonsang Lee, Bjorn Engquist. Variable step size multiscale methods for stiff and highly oscillatory dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1079-1097. doi: 10.3934/dcds.2014.34.1079 |
[12] |
Wenlei Li, Shaoyun Shi. Singular perturbed renormalization group theory and its application to highly oscillatory problems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1819-1833. doi: 10.3934/dcdsb.2018089 |
[13] |
Marissa Condon, Jing Gao, Arieh Iserles. On asymptotic expansion solvers for highly oscillatory semi-explicit DAEs. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4813-4837. doi: 10.3934/dcds.2016008 |
[14] |
Darren C. Ong. Orthogonal polynomials on the unit circle with quasiperiodic Verblunsky coefficients have generic purely singular continuous spectrum. Conference Publications, 2013, 2013 (special) : 605-609. doi: 10.3934/proc.2013.2013.605 |
[15] |
Fazlollah Soleymani, Ali Akgül. European option valuation under the Bates PIDE in finance: A numerical implementation of the Gaussian scheme. Discrete & Continuous Dynamical Systems - S, 2020, 13 (3) : 889-909. doi: 10.3934/dcdss.2020052 |
[16] |
G. Bonanno, Salvatore A. Marano. Highly discontinuous elliptic problems. Conference Publications, 1998, 1998 (Special) : 118-123. doi: 10.3934/proc.1998.1998.118 |
[17] |
Palle E. T. Jorgensen and Steen Pedersen. Orthogonal harmonic analysis of fractal measures. Electronic Research Announcements, 1998, 4: 35-42. |
[18] |
K. T. Arasu, Manil T. Mohan. Optimization problems with orthogonal matrix constraints. Numerical Algebra, Control & Optimization, 2018, 8 (4) : 413-440. doi: 10.3934/naco.2018026 |
[19] |
Michael Boshernitzan, Máté Wierdl. Almost-everywhere convergence and polynomials. Journal of Modern Dynamics, 2008, 2 (3) : 465-470. doi: 10.3934/jmd.2008.2.465 |
[20] |
Elisavet Konstantinou, Aristides Kontogeorgis. Some remarks on the construction of class polynomials. Advances in Mathematics of Communications, 2011, 5 (1) : 109-118. doi: 10.3934/amc.2011.5.109 |
2018 Impact Factor: 1.143
Tools
Metrics
Other articles
by authors
[Back to Top]