-
Previous Article
One-dimensional weakly nonlinear model equations for Rossby waves
- DCDS Home
- This Issue
- Next Article
Introduction
1. | Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna |
References:
[1] |
B. Buffoni and J. F. Toland, Analytic Theory of Global Bifurcation: An Introduction, Princeton University Press, Princeton, NJ, 2003. |
[2] |
D. Clamond, New exact relations for easy recovery of steady wave profiles from bottom pressure measurements, J. Fluid Mech., 726 (2013), 547-558. |
[3] |
D. Clamond and A. Constantin, Recovery of steady periodic wave profiles from pressure measurements at the bed, J. Fluid Mech., 714 (2013), 463-475. |
[4] |
A. Constantin, Edge waves along a sloping beach, J. Phys. A, 34 (2001), 9723-9731. |
[5] |
A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535. |
[6] |
A. Constantin, Particle trajectories in extreme Stokes waves, IMA J. Appl. Math., 77 (2012), 293-307. |
[7] |
A. Constantin, On the recovery of solitary wave profiles from pressure measurements, J. Fluid Mech., 699 (2012), 376-384. |
[8] |
A. Constantin, M. Ehrnström and E. Wahlén, Symmetry of steady periodic gravity water waves with vorticity, Duke Math. J., 140 (2007), 591-603. |
[9] |
A. Constantin and W. A. Strauss, Pressure beneath a Stokes wave, Comm. Pure Appl. Math., 63 (2010), 533-557. |
[10] |
E. Dancer, Bifurcation theory for analytic operators, Proc. London Math. Soc., 26 (1973), 359-384. |
[11] |
F. Gerstner, Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile, Ann. Phys., 2 (1809), 412-445. |
[12] |
D. Henry and R. Ivanov, One-dimensional weakly nonlinear model equations for Rossby waves, Discr. Cont. Dyn. Syst. A, 34 (2014), 3025-3034.
doi: 10.3934/dcds.2014.34.3025. |
[13] |
H.-C. Hsu, Recovering surface profiles of solitary waves on a uniform stream from pressure measurements, Discr. Cont. Dyn. Syst. A, 34 (2014), 3035-3043.
doi: 10.3934/dcds.2014.34.3035. |
[14] |
D. Ionescu-Kruse and A.-V. Matioc, Small-amplitude equatorial water waves with constant vorticity: Dispersion relations and particle trajectories, Discr. Cont. Dyn. Syst. A, 34 (2014), 3045-3060.
doi: 10.3934/dcds.2014.34.3045. |
[15] |
M. Kovalyov, On the nature of large and rogue waves, Discr. Cont. Dyn. Syst. A, 34 (2014), 3061-3093.
doi: 10.3934/dcds.2014.34.3061. |
[16] |
T. Lyons, Particle trajectories in extreme Stokes waves over infinite depth, Discr. Cont. Dyn. Syst. A, 34 (2014), 3095-3107.
doi: 10.3934/dcds.2014.34.3095. |
[17] |
C. I. Martin, Dispersion relations for periodic water waves with surface tension and discontinuous vorticity, Discr. Cont. Dyn. Syst. A, 34 (2014), 3109-3123.
doi: 10.3934/dcds.2014.34.3109. |
[18] |
B.-V. Matioc, A characterization of the symmetric steady water waves in terms of the underlying flow, Discr. Cont. Dyn. Syst. A, 34 (2014), 3125-3133.
doi: 10.3934/dcds.2014.34.3125. |
[19] |
A. Nachbin and R. Ribeiro-Junior, A boundary integral formulation for particle trajectories in Stokes waves, Discr. Cont. Dyn. Syst. A, 34 (2014), 3135-3153.
doi: 10.3934/dcds.2014.34.3135. |
[20] |
H. Okamoto, T. Sakajo and M. Wunsch, Steady-states and traveling-wave solutions of the generalized Constantin-Lax-Majda equation, Discr. Cont. Dyn. Syst. A, 34 (2014), 3155-3170.
doi: 10.3934/dcds.2014.34.3155. |
[21] |
K. Oliveras, V. Vasan, B. Deconinck and D. Henderson, Recovering the water-wave profile from pressure measurements, SIAM J. Appl. Math., 72 (2012), 897-918. |
[22] |
P. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513. |
[23] |
M. Stiassnie and R. Stuhlmeier, Progressive waves on a blunt interface, Discr. Cont. Dyn. Syst. A, 34 (2014), 3171-3182.
doi: 10.3934/dcds.2014.34.3171. |
[24] |
R. Stuhlmeier, Internal Gerstner waves on a sloping bed, Discr. Cont. Dyn. Syst. A, 34 (2014), 3183-3192.
doi: 10.3934/dcds.2014.34.3183. |
[25] |
J. F. Toland, Energy-minimising parallel flows with prescribed vorticity distribution, Discr. Cont. Dyn. Syst. A, 34 (2014), 3193-3210.
doi: 10.3934/dcds.2014.34.3193. |
[26] |
J. F. Toland, Non-existence of global energy minimisers in Stokes waves problems, Discr. Cont. Dyn. Syst. A, 34 (2014), 3211-3217.
doi: 10.3934/dcds.2014.34.3211. |
[27] |
V. Vasan and K. Oliveras, Pressure beneath a traveling wave with constant vorticity, Discr. Cont. Dyn. Syst. A, 34 (2014), 3219-3239.
doi: 10.3934/dcds.2014.34.3219. |
[28] |
S. Walsh, Steady stratified periodic gravity waves with surface tension: Local bifurcation, Discr. Cont. Dyn. Syst. A, 34 (2014), 3241-3285.
doi: 10.3934/dcds.2014.34.3241. |
[29] |
S. Walsh, Steady stratified periodic gravity waves with surface tension: Global bifurcation, Discr. Cont. Dyn. Syst. A, 34 (2014), 3287-3315.
doi: 10.3934/dcds.2014.34.3287. |
show all references
References:
[1] |
B. Buffoni and J. F. Toland, Analytic Theory of Global Bifurcation: An Introduction, Princeton University Press, Princeton, NJ, 2003. |
[2] |
D. Clamond, New exact relations for easy recovery of steady wave profiles from bottom pressure measurements, J. Fluid Mech., 726 (2013), 547-558. |
[3] |
D. Clamond and A. Constantin, Recovery of steady periodic wave profiles from pressure measurements at the bed, J. Fluid Mech., 714 (2013), 463-475. |
[4] |
A. Constantin, Edge waves along a sloping beach, J. Phys. A, 34 (2001), 9723-9731. |
[5] |
A. Constantin, The trajectories of particles in Stokes waves, Invent. Math., 166 (2006), 523-535. |
[6] |
A. Constantin, Particle trajectories in extreme Stokes waves, IMA J. Appl. Math., 77 (2012), 293-307. |
[7] |
A. Constantin, On the recovery of solitary wave profiles from pressure measurements, J. Fluid Mech., 699 (2012), 376-384. |
[8] |
A. Constantin, M. Ehrnström and E. Wahlén, Symmetry of steady periodic gravity water waves with vorticity, Duke Math. J., 140 (2007), 591-603. |
[9] |
A. Constantin and W. A. Strauss, Pressure beneath a Stokes wave, Comm. Pure Appl. Math., 63 (2010), 533-557. |
[10] |
E. Dancer, Bifurcation theory for analytic operators, Proc. London Math. Soc., 26 (1973), 359-384. |
[11] |
F. Gerstner, Theorie der Wellen samt einer daraus abgeleiteten Theorie der Deichprofile, Ann. Phys., 2 (1809), 412-445. |
[12] |
D. Henry and R. Ivanov, One-dimensional weakly nonlinear model equations for Rossby waves, Discr. Cont. Dyn. Syst. A, 34 (2014), 3025-3034.
doi: 10.3934/dcds.2014.34.3025. |
[13] |
H.-C. Hsu, Recovering surface profiles of solitary waves on a uniform stream from pressure measurements, Discr. Cont. Dyn. Syst. A, 34 (2014), 3035-3043.
doi: 10.3934/dcds.2014.34.3035. |
[14] |
D. Ionescu-Kruse and A.-V. Matioc, Small-amplitude equatorial water waves with constant vorticity: Dispersion relations and particle trajectories, Discr. Cont. Dyn. Syst. A, 34 (2014), 3045-3060.
doi: 10.3934/dcds.2014.34.3045. |
[15] |
M. Kovalyov, On the nature of large and rogue waves, Discr. Cont. Dyn. Syst. A, 34 (2014), 3061-3093.
doi: 10.3934/dcds.2014.34.3061. |
[16] |
T. Lyons, Particle trajectories in extreme Stokes waves over infinite depth, Discr. Cont. Dyn. Syst. A, 34 (2014), 3095-3107.
doi: 10.3934/dcds.2014.34.3095. |
[17] |
C. I. Martin, Dispersion relations for periodic water waves with surface tension and discontinuous vorticity, Discr. Cont. Dyn. Syst. A, 34 (2014), 3109-3123.
doi: 10.3934/dcds.2014.34.3109. |
[18] |
B.-V. Matioc, A characterization of the symmetric steady water waves in terms of the underlying flow, Discr. Cont. Dyn. Syst. A, 34 (2014), 3125-3133.
doi: 10.3934/dcds.2014.34.3125. |
[19] |
A. Nachbin and R. Ribeiro-Junior, A boundary integral formulation for particle trajectories in Stokes waves, Discr. Cont. Dyn. Syst. A, 34 (2014), 3135-3153.
doi: 10.3934/dcds.2014.34.3135. |
[20] |
H. Okamoto, T. Sakajo and M. Wunsch, Steady-states and traveling-wave solutions of the generalized Constantin-Lax-Majda equation, Discr. Cont. Dyn. Syst. A, 34 (2014), 3155-3170.
doi: 10.3934/dcds.2014.34.3155. |
[21] |
K. Oliveras, V. Vasan, B. Deconinck and D. Henderson, Recovering the water-wave profile from pressure measurements, SIAM J. Appl. Math., 72 (2012), 897-918. |
[22] |
P. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal., 7 (1971), 487-513. |
[23] |
M. Stiassnie and R. Stuhlmeier, Progressive waves on a blunt interface, Discr. Cont. Dyn. Syst. A, 34 (2014), 3171-3182.
doi: 10.3934/dcds.2014.34.3171. |
[24] |
R. Stuhlmeier, Internal Gerstner waves on a sloping bed, Discr. Cont. Dyn. Syst. A, 34 (2014), 3183-3192.
doi: 10.3934/dcds.2014.34.3183. |
[25] |
J. F. Toland, Energy-minimising parallel flows with prescribed vorticity distribution, Discr. Cont. Dyn. Syst. A, 34 (2014), 3193-3210.
doi: 10.3934/dcds.2014.34.3193. |
[26] |
J. F. Toland, Non-existence of global energy minimisers in Stokes waves problems, Discr. Cont. Dyn. Syst. A, 34 (2014), 3211-3217.
doi: 10.3934/dcds.2014.34.3211. |
[27] |
V. Vasan and K. Oliveras, Pressure beneath a traveling wave with constant vorticity, Discr. Cont. Dyn. Syst. A, 34 (2014), 3219-3239.
doi: 10.3934/dcds.2014.34.3219. |
[28] |
S. Walsh, Steady stratified periodic gravity waves with surface tension: Local bifurcation, Discr. Cont. Dyn. Syst. A, 34 (2014), 3241-3285.
doi: 10.3934/dcds.2014.34.3241. |
[29] |
S. Walsh, Steady stratified periodic gravity waves with surface tension: Global bifurcation, Discr. Cont. Dyn. Syst. A, 34 (2014), 3287-3315.
doi: 10.3934/dcds.2014.34.3287. |
[1] |
Jing Cui, Guangyue Gao, Shu-Ming Sun. Controllability and stabilization of gravity-capillary surface water waves in a basin. Communications on Pure and Applied Analysis, 2022, 21 (6) : 2035-2063. doi: 10.3934/cpaa.2021158 |
[2] |
Jerry L. Bona, Henrik Kalisch. Models for internal waves in deep water. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 1-20. doi: 10.3934/dcds.2000.6.1 |
[3] |
Vera Mikyoung Hur. On the formation of singularities for surface water waves. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1465-1474. doi: 10.3934/cpaa.2012.11.1465 |
[4] |
Jerry L. Bona, Thierry Colin, Colette Guillopé. Propagation of long-crested water waves. Ⅱ. Bore propagation. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5543-5569. doi: 10.3934/dcds.2019244 |
[5] |
Marcelo M. Disconzi, Igor Kukavica. A priori estimates for the 3D compressible free-boundary Euler equations with surface tension in the case of a liquid. Evolution Equations and Control Theory, 2019, 8 (3) : 503-542. doi: 10.3934/eect.2019025 |
[6] |
Vincent Duchêne, Samer Israwi, Raafat Talhouk. Shallow water asymptotic models for the propagation of internal waves. Discrete and Continuous Dynamical Systems - S, 2014, 7 (2) : 239-269. doi: 10.3934/dcdss.2014.7.239 |
[7] |
Kristoffer Varholm. Solitary gravity-capillary water waves with point vortices. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3927-3959. doi: 10.3934/dcds.2016.36.3927 |
[8] |
Shu-Ming Sun. Existence theory of capillary-gravity waves on water of finite depth. Mathematical Control and Related Fields, 2014, 4 (3) : 315-363. doi: 10.3934/mcrf.2014.4.315 |
[9] |
Samuel Walsh. Steady stratified periodic gravity waves with surface tension II: Global bifurcation. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3287-3315. doi: 10.3934/dcds.2014.34.3287 |
[10] |
Samuel Walsh. Steady stratified periodic gravity waves with surface tension I: Local bifurcation. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3241-3285. doi: 10.3934/dcds.2014.34.3241 |
[11] |
Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete and Continuous Dynamical Systems, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215 |
[12] |
Harunori Monobe, Hirokazu Ninomiya. Multiple existence of traveling waves of a free boundary problem describing cell motility. Discrete and Continuous Dynamical Systems - B, 2014, 19 (3) : 789-799. doi: 10.3934/dcdsb.2014.19.789 |
[13] |
Angel Castro, Diego Córdoba, Charles Fefferman, Francisco Gancedo, Javier Gómez-Serrano. Structural stability for the splash singularities of the water waves problem. Discrete and Continuous Dynamical Systems, 2014, 34 (12) : 4997-5043. doi: 10.3934/dcds.2014.34.4997 |
[14] |
Calin Iulian Martin. Dispersion relations for periodic water waves with surface tension and discontinuous vorticity. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3109-3123. doi: 10.3934/dcds.2014.34.3109 |
[15] |
Elena Kartashova. Nonlinear resonances of water waves. Discrete and Continuous Dynamical Systems - B, 2009, 12 (3) : 607-621. doi: 10.3934/dcdsb.2009.12.607 |
[16] |
Robert McOwen, Peter Topalov. Asymptotics in shallow water waves. Discrete and Continuous Dynamical Systems, 2015, 35 (7) : 3103-3131. doi: 10.3934/dcds.2015.35.3103 |
[17] |
Calin Iulian Martin. A Hamiltonian approach for nonlinear rotational capillary-gravity water waves in stratified flows. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 387-404. doi: 10.3934/dcds.2017016 |
[18] |
Raphael Stuhlmeier. Internal Gerstner waves on a sloping bed. Discrete and Continuous Dynamical Systems, 2014, 34 (8) : 3183-3192. doi: 10.3934/dcds.2014.34.3183 |
[19] |
José Raúl Quintero, Juan Carlos Muñoz Grajales. Solitary waves for an internal wave model. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5721-5741. doi: 10.3934/dcds.2016051 |
[20] |
Hung Le. Elliptic equations with transmission and Wentzell boundary conditions and an application to steady water waves in the presence of wind. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3357-3385. doi: 10.3934/dcds.2018144 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]