March  2014, 34(3): 959-975. doi: 10.3934/dcds.2014.34.959

A Lie--Deprit perturbation algorithm for linear differential equations with periodic coefficients

1. 

Institut de Matemàtiques i Aplicacions de Castelló (IMAC) and Departament de Matemàtiques, Universitat Jaume I, E-12071 Castellón, Spain

2. 

Institut de Matemàtiques i Aplicacions de Castelló (IMAC), and Departament de Matemàtiques, Universitat Jaume I, E-12071 Castellón, Spain

Received  November 2012 Revised  March 2013 Published  August 2013

A perturbative procedure based on the Lie--Deprit algorithm of classical mechanics is proposed to compute analytic approximations to the fundamental matrix of linear differential equations with periodic coefficients. These approximations reproduce the structure assured by the Floquet theorem. Alternatively, the algorithm provides explicit approximations to the Lyapunov transformation reducing the original periodic problem to an autonomous system and also to its characteristic exponents. The procedure is computationally well adapted and converges for sufficiently small values of the perturbation parameter. Moreover, when the system evolves in a Lie group, the approximations also belong to the same Lie group, thus preserving qualitative properties of the exact solution.
Citation: Fernando Casas, Cristina Chiralt. A Lie--Deprit perturbation algorithm for linear differential equations with periodic coefficients. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 959-975. doi: 10.3934/dcds.2014.34.959
References:
[1]

L. Ya. Adrianova, "Introduction to Linear Systems of Differential Equations,", American Mathematical Society, (1995). Google Scholar

[2]

S. Blanes, F. Casas, J. A. Oteo and J. Ros, The Magnus expansion and some of its applications,, Phys. Rep., 470 (2009), 151. doi: 10.1016/j.physrep.2008.11.001. Google Scholar

[3]

V. Burd, "Method of Averaging for Differential Equations on an Infinite Interval,", Chapman & Hall / CRC, (2007). doi: 10.1201/9781584888758. Google Scholar

[4]

F. Casas, J. A. Oteo and J. Ros, Floquet theory: Exponential perturbative treatment,, J. Phys. A: Math. Gen., 34 (2001), 3379. doi: 10.1088/0305-4470/34/16/305. Google Scholar

[5]

F. Casas, J. A. Oteo and J. Ros, Unitary transformations depending on a small parameter,, Proc. R. Soc. A, 468 (2012), 685. doi: 10.1098/rspa.2011.0388. Google Scholar

[6]

E. A. Coddington and N. Levinson, "Theory of Ordinary Differential Equations,", McGraw-Hill, (1955). Google Scholar

[7]

A. Deprit, Canonical transformations depending on a small parameter,, Celes. Mech., 1 (1969), 12. doi: 10.1007/BF01230629. Google Scholar

[8]

M. G. Floquet, Sur les équations différentielles linéaires à coefficients périodiques,, Ann. École Norm. Sup., 12 (1883), 47. Google Scholar

[9]

J. K. Hale, "Ordinary Differential Equations,", Krieger Publishing, (1980). Google Scholar

[10]

A. Iserles and S. P. Nørsett, On the solution of linear differential equations in Lie groups,, Phil. Trans. Royal Soc. A, 357 (1999), 983. doi: 10.1098/rsta.1999.0362. Google Scholar

[11]

A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett and A. Zanna, Lie-group methods,, Acta Numerica, 9 (2000), 215. doi: 10.1017/S0962492900002154. Google Scholar

[12]

S. Klarsfeld and J. A. Oteo, Recursive generation of higher-order terms in the Magnus expansion,, Phys. Rev. A, 39 (1989), 3270. doi: 10.1103/PhysRevA.39.3270. Google Scholar

[13]

E. S. Mananga and T. Charpentier, Introduction of the Floquet-Magnus expansion in solid-state nuclear magnetic resonance spectroscopy,, J. Chem. Phys., 135 (2011). doi: 10.1063/1.3610943. Google Scholar

[14]

W. Magnus, On the exponential solution of differential equations for a linear operator,, Commun. Pure Appl. Math., 7 (1954), 649. doi: 10.1002/cpa.3160070404. Google Scholar

[15]

F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, "NIST Handbook of Mathematical Functions,", Cambridge University Press, (2010). Google Scholar

[16]

V. A. Yakubovich and V. M. Starzhinskii, "Linear Differential Equations with Periodic Coefficients,", John Wiley & Sons, (1975). Google Scholar

show all references

References:
[1]

L. Ya. Adrianova, "Introduction to Linear Systems of Differential Equations,", American Mathematical Society, (1995). Google Scholar

[2]

S. Blanes, F. Casas, J. A. Oteo and J. Ros, The Magnus expansion and some of its applications,, Phys. Rep., 470 (2009), 151. doi: 10.1016/j.physrep.2008.11.001. Google Scholar

[3]

V. Burd, "Method of Averaging for Differential Equations on an Infinite Interval,", Chapman & Hall / CRC, (2007). doi: 10.1201/9781584888758. Google Scholar

[4]

F. Casas, J. A. Oteo and J. Ros, Floquet theory: Exponential perturbative treatment,, J. Phys. A: Math. Gen., 34 (2001), 3379. doi: 10.1088/0305-4470/34/16/305. Google Scholar

[5]

F. Casas, J. A. Oteo and J. Ros, Unitary transformations depending on a small parameter,, Proc. R. Soc. A, 468 (2012), 685. doi: 10.1098/rspa.2011.0388. Google Scholar

[6]

E. A. Coddington and N. Levinson, "Theory of Ordinary Differential Equations,", McGraw-Hill, (1955). Google Scholar

[7]

A. Deprit, Canonical transformations depending on a small parameter,, Celes. Mech., 1 (1969), 12. doi: 10.1007/BF01230629. Google Scholar

[8]

M. G. Floquet, Sur les équations différentielles linéaires à coefficients périodiques,, Ann. École Norm. Sup., 12 (1883), 47. Google Scholar

[9]

J. K. Hale, "Ordinary Differential Equations,", Krieger Publishing, (1980). Google Scholar

[10]

A. Iserles and S. P. Nørsett, On the solution of linear differential equations in Lie groups,, Phil. Trans. Royal Soc. A, 357 (1999), 983. doi: 10.1098/rsta.1999.0362. Google Scholar

[11]

A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett and A. Zanna, Lie-group methods,, Acta Numerica, 9 (2000), 215. doi: 10.1017/S0962492900002154. Google Scholar

[12]

S. Klarsfeld and J. A. Oteo, Recursive generation of higher-order terms in the Magnus expansion,, Phys. Rev. A, 39 (1989), 3270. doi: 10.1103/PhysRevA.39.3270. Google Scholar

[13]

E. S. Mananga and T. Charpentier, Introduction of the Floquet-Magnus expansion in solid-state nuclear magnetic resonance spectroscopy,, J. Chem. Phys., 135 (2011). doi: 10.1063/1.3610943. Google Scholar

[14]

W. Magnus, On the exponential solution of differential equations for a linear operator,, Commun. Pure Appl. Math., 7 (1954), 649. doi: 10.1002/cpa.3160070404. Google Scholar

[15]

F. W. J. Olver, D. W. Lozier, R. F. Boisvert and C. W. Clark, "NIST Handbook of Mathematical Functions,", Cambridge University Press, (2010). Google Scholar

[16]

V. A. Yakubovich and V. M. Starzhinskii, "Linear Differential Equations with Periodic Coefficients,", John Wiley & Sons, (1975). Google Scholar

[1]

Roberta Fabbri, Carmen Núñez, Ana M. Sanz. A perturbation theorem for linear Hamiltonian systems with bounded orbits. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 623-635. doi: 10.3934/dcds.2005.13.623

[2]

Gengsheng Wang, Guojie Zheng. The optimal control to restore the periodic property of a linear evolution system with small perturbation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1621-1639. doi: 10.3934/dcdsb.2010.14.1621

[3]

Fatih Bayazit, Ulrich Groh, Rainer Nagel. Floquet representations and asymptotic behavior of periodic evolution families. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4795-4810. doi: 10.3934/dcds.2013.33.4795

[4]

Marcelo Messias. Periodic perturbation of quadratic systems with two infinite heteroclinic cycles. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1881-1899. doi: 10.3934/dcds.2012.32.1881

[5]

Oleg Makarenkov, Paolo Nistri. On the rate of convergence of periodic solutions in perturbed autonomous systems as the perturbation vanishes. Communications on Pure & Applied Analysis, 2008, 7 (1) : 49-61. doi: 10.3934/cpaa.2008.7.49

[6]

Xiaocai Wang. Non-floquet invariant tori in reversible systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3439-3457. doi: 10.3934/dcds.2018147

[7]

Sun-Sig Byun, Hongbin Chen, Mijoung Kim, Lihe Wang. Lp regularity theory for linear elliptic systems. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 121-134. doi: 10.3934/dcds.2007.18.121

[8]

Roman Šimon Hilscher. On general Sturmian theory for abnormal linear Hamiltonian systems. Conference Publications, 2011, 2011 (Special) : 684-691. doi: 10.3934/proc.2011.2011.684

[9]

J. Húska, Peter Poláčik. Exponential separation and principal Floquet bundles for linear parabolic equations on $R^N$. Discrete & Continuous Dynamical Systems - A, 2008, 20 (1) : 81-113. doi: 10.3934/dcds.2008.20.81

[10]

C. D. Ahlbrandt, A. C. Peterson. A general reduction of order theorem for discrete linear symplectic systems. Conference Publications, 1998, 1998 (Special) : 7-18. doi: 10.3934/proc.1998.1998.7

[11]

D. Ruiz, J. R. Ward. Some notes on periodic systems with linear part at resonance. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 337-350. doi: 10.3934/dcds.2004.11.337

[12]

John Boyd. Strongly nonlinear perturbation theory for solitary waves and bions. Evolution Equations & Control Theory, 2019, 8 (1) : 1-29. doi: 10.3934/eect.2019001

[13]

Victoriano Carmona, Emilio Freire, Soledad Fernández-García. Periodic orbits and invariant cones in three-dimensional piecewise linear systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 59-72. doi: 10.3934/dcds.2015.35.59

[14]

Shiwang Ma. Nontrivial periodic solutions for asymptotically linear hamiltonian systems at resonance. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2361-2380. doi: 10.3934/cpaa.2013.12.2361

[15]

Mark A. Pinsky, Alexandr A. Zevin. Stability criteria for linear Hamiltonian systems with uncertain bounded periodic coefficients. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 243-250. doi: 10.3934/dcds.2005.12.243

[16]

Massimo Tarallo. Fredholm's alternative for a class of almost periodic linear systems. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2301-2313. doi: 10.3934/dcds.2012.32.2301

[17]

D. Motreanu, V. V. Motreanu, Nikolaos S. Papageorgiou. Nonautonomous resonant periodic systems with indefinite linear part and a nonsmooth potential. Communications on Pure & Applied Analysis, 2011, 10 (5) : 1401-1414. doi: 10.3934/cpaa.2011.10.1401

[18]

D. Motreanu, V. V. Motreanu, Nikolaos S. Papageorgiou. Two nontrivial solutions for periodic systems with indefinite linear part. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 197-210. doi: 10.3934/dcds.2007.19.197

[19]

Paolo Gidoni, Alessandro Margheri. Lower bound on the number of periodic solutions for asymptotically linear planar Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 585-606. doi: 10.3934/dcds.2019024

[20]

Ruotian Gao, Wenxun Xing. Robust sensitivity analysis for linear programming with ellipsoidal perturbation. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-16. doi: 10.3934/jimo.2019041

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]