March  2014, 34(3): 977-990. doi: 10.3934/dcds.2014.34.977

Preserving first integrals with symmetric Lie group methods

1. 

Norwegian University of Science and Technology, Department of Mathematical Sciences, 7491, Trondheim, Norway

Received  January 2013 Revised  May 2013 Published  August 2013

The discrete gradient approach is generalized to yield first integral preserving methods for differential equations in Lie groups.
Citation: Elena Celledoni, Brynjulf Owren. Preserving first integrals with symmetric Lie group methods. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 977-990. doi: 10.3934/dcds.2014.34.977
References:
[1]

R. L. Adler, J. P. Dedieu, J. Y. Margulies, M. Martens and M. Shub, Newton's method on Riemannian manifolds and a geometric model for the human spine, IMA Journal of Numerical Analysis, 22 (2002), 359-390. doi: 10.1093/imanum/22.3.359.

[2]

Luigi Brugnano, Felice Iavernaro and Donato Trigiante., Hamiltonian boundary value methods (energy preserving discrete line integral methods), JNAIAM. J. Numer. Anal. Ind. Appl. Math., 5 (2010), 17-37.

[3]

E. Celledoni, V. Grimm, R. I. McLachlan, D. I. McLaren, D. O'Neale, B. Owren and G. R. W. Quispel, Preserving energy resp. dissipation in numerical pdes using the "average vector field" method, Journal of Computational Physics, 231 (2012), 6770-6789. doi: 10.1016/j.jcp.2012.06.022.

[4]

E. Celledoni, H. Marthinsen and B. Owren, An introduction to Lie group integrators - basics, new developments and applications, Journal of Computational Physics, (2013). To appear. doi: 10.1016/j.jcp.2012.12.031.

[5]

S. H. Christiansen, H. Z. Munthe-Kaas and B. Owren, Topics in structure-preserving discretization, Acta Numerica, 20 (2011), 1-119. doi: 10.1017/S096249291100002X.

[6]

David Cohen and Ernst Hairer, Linear energy-preserving integrators for Poisson systems, BIT, 51 (2011), 91-101. doi: 10.1007/s10543-011-0310-z.

[7]

M. Dahlby and B. Owren, A general framework for deriving integral preserving numerical methods for PDEs, SIAM J. Sci. Comput., 33 (2011), 2318-2340. doi: 10.1137/100810174.

[8]

O. Gonzalez, Time integration and discrete Hamiltonian systems, J. Nonlinear Sci., 6 (1996), 449-467. doi: 10.1007/BF02440162.

[9]

E. Hairer, Energy-preserving variant of collocation methods, Journal of Numerical Analysis, Industrial and Applied Mathematics, 5 (2010), 73-84.

[10]

A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett and A. Zanna, Lie-group methods, Acta Numerica, 9 (2000), 215-365. doi: 10.1017/S0962492900002154.

[11]

D. Lewis and J. C. Simo, Nonlinear stability of rotating pseudo-rigid bodies, Proc. R. Soc. Lond. A, 427 (1990), 281-319. doi: 10.1098/rspa.1990.0014.

[12]

D. Lewis and J. C. Simo, Conserving algorithms for the dynamics of Hamiltonian systems of Lie groups, J. Nonlinear Sci., 4 (1994), 253-299. doi: 10.1007/BF02430634.

[13]

R. I. McLachlan, G. R. W. Quispel and N. Robidoux, Geometric integration using discrete gradients, Phil. Trans. Royal Soc. A, 357 (1999), 1021-1045. doi: 10.1098/rsta.1999.0363.

[14]

A. Zanna, Collocation and relaxed collocation for the Fer and the Magnus expansions, SIAM J. Numer. Anal., 36 (1999), 1145-1182. doi: 10.1137/S0036142997326616.

show all references

References:
[1]

R. L. Adler, J. P. Dedieu, J. Y. Margulies, M. Martens and M. Shub, Newton's method on Riemannian manifolds and a geometric model for the human spine, IMA Journal of Numerical Analysis, 22 (2002), 359-390. doi: 10.1093/imanum/22.3.359.

[2]

Luigi Brugnano, Felice Iavernaro and Donato Trigiante., Hamiltonian boundary value methods (energy preserving discrete line integral methods), JNAIAM. J. Numer. Anal. Ind. Appl. Math., 5 (2010), 17-37.

[3]

E. Celledoni, V. Grimm, R. I. McLachlan, D. I. McLaren, D. O'Neale, B. Owren and G. R. W. Quispel, Preserving energy resp. dissipation in numerical pdes using the "average vector field" method, Journal of Computational Physics, 231 (2012), 6770-6789. doi: 10.1016/j.jcp.2012.06.022.

[4]

E. Celledoni, H. Marthinsen and B. Owren, An introduction to Lie group integrators - basics, new developments and applications, Journal of Computational Physics, (2013). To appear. doi: 10.1016/j.jcp.2012.12.031.

[5]

S. H. Christiansen, H. Z. Munthe-Kaas and B. Owren, Topics in structure-preserving discretization, Acta Numerica, 20 (2011), 1-119. doi: 10.1017/S096249291100002X.

[6]

David Cohen and Ernst Hairer, Linear energy-preserving integrators for Poisson systems, BIT, 51 (2011), 91-101. doi: 10.1007/s10543-011-0310-z.

[7]

M. Dahlby and B. Owren, A general framework for deriving integral preserving numerical methods for PDEs, SIAM J. Sci. Comput., 33 (2011), 2318-2340. doi: 10.1137/100810174.

[8]

O. Gonzalez, Time integration and discrete Hamiltonian systems, J. Nonlinear Sci., 6 (1996), 449-467. doi: 10.1007/BF02440162.

[9]

E. Hairer, Energy-preserving variant of collocation methods, Journal of Numerical Analysis, Industrial and Applied Mathematics, 5 (2010), 73-84.

[10]

A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett and A. Zanna, Lie-group methods, Acta Numerica, 9 (2000), 215-365. doi: 10.1017/S0962492900002154.

[11]

D. Lewis and J. C. Simo, Nonlinear stability of rotating pseudo-rigid bodies, Proc. R. Soc. Lond. A, 427 (1990), 281-319. doi: 10.1098/rspa.1990.0014.

[12]

D. Lewis and J. C. Simo, Conserving algorithms for the dynamics of Hamiltonian systems of Lie groups, J. Nonlinear Sci., 4 (1994), 253-299. doi: 10.1007/BF02430634.

[13]

R. I. McLachlan, G. R. W. Quispel and N. Robidoux, Geometric integration using discrete gradients, Phil. Trans. Royal Soc. A, 357 (1999), 1021-1045. doi: 10.1098/rsta.1999.0363.

[14]

A. Zanna, Collocation and relaxed collocation for the Fer and the Magnus expansions, SIAM J. Numer. Anal., 36 (1999), 1145-1182. doi: 10.1137/S0036142997326616.

[1]

Iasson Karafyllis, Lars Grüne. Feedback stabilization methods for the numerical solution of ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 283-317. doi: 10.3934/dcdsb.2011.16.283

[2]

William Guo. Unification of the common methods for solving the first-order linear ordinary differential equations. STEM Education, 2021, 1 (2) : 127-140. doi: 10.3934/steme.2021010

[3]

Richard A. Norton, G. R. W. Quispel. Discrete gradient methods for preserving a first integral of an ordinary differential equation. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 1147-1170. doi: 10.3934/dcds.2014.34.1147

[4]

Bin Wang, Arieh Iserles. Dirichlet series for dynamical systems of first-order ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 281-298. doi: 10.3934/dcdsb.2014.19.281

[5]

Richard A. Norton, David I. McLaren, G. R. W. Quispel, Ari Stern, Antonella Zanna. Projection methods and discrete gradient methods for preserving first integrals of ODEs. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 2079-2098. doi: 10.3934/dcds.2015.35.2079

[6]

Joseph A. Connolly, Neville J. Ford. Comparison of numerical methods for fractional differential equations. Communications on Pure and Applied Analysis, 2006, 5 (2) : 289-307. doi: 10.3934/cpaa.2006.5.289

[7]

Ben-Yu Guo, Zhong-Qing Wang. A spectral collocation method for solving initial value problems of first order ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2010, 14 (3) : 1029-1054. doi: 10.3934/dcdsb.2010.14.1029

[8]

Jingwen Wu, Jintao Hu, Hongjiong Tian. Functionally-fitted block $ \theta $-methods for ordinary differential equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2603-2617. doi: 10.3934/dcdss.2020164

[9]

Wen Li, Song Wang, Volker Rehbock. A 2nd-order one-point numerical integration scheme for fractional ordinary differential equations. Numerical Algebra, Control and Optimization, 2017, 7 (3) : 273-287. doi: 10.3934/naco.2017018

[10]

Raffaele D'Ambrosio, Martina Moccaldi, Beatrice Paternoster. Numerical preservation of long-term dynamics by stochastic two-step methods. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2763-2773. doi: 10.3934/dcdsb.2018105

[11]

Raffaele D'Ambrosio, Stefano Di Giovacchino. Numerical preservation issues in stochastic dynamical systems by $ \vartheta $-methods. Journal of Computational Dynamics, 2022, 9 (2) : 123-131. doi: 10.3934/jcd.2021023

[12]

Yingxiang Xu, Yongkui Zou. Preservation of homoclinic orbits under discretization of delay differential equations. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 275-299. doi: 10.3934/dcds.2011.31.275

[13]

Bernard Dacorogna, Alessandro Ferriero. Regularity and selecting principles for implicit ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 87-101. doi: 10.3934/dcdsb.2009.11.87

[14]

Zvi Artstein. Averaging of ordinary differential equations with slowly varying averages. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 353-365. doi: 10.3934/dcdsb.2010.14.353

[15]

Jaume Giné, Maite Grau, Jaume Llibre. Polynomial and rational first integrals for planar quasi--homogeneous polynomial differential systems. Discrete and Continuous Dynamical Systems, 2013, 33 (10) : 4531-4547. doi: 10.3934/dcds.2013.33.4531

[16]

Michal Fečkan, Michal Pospíšil. Discretization of dynamical systems with first integrals. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3543-3554. doi: 10.3934/dcds.2013.33.3543

[17]

Xuefeng Shen, Khoa Tran, Melvin Leok. High-order symplectic Lie group methods on $ SO(n) $ using the polar decomposition. Journal of Computational Dynamics, 2022  doi: 10.3934/jcd.2022003

[18]

Serge Nicaise. Stability and asymptotic properties of dissipative evolution equations coupled with ordinary differential equations. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021057

[19]

Sergio Albeverio, Sonia Mazzucchi. Infinite dimensional integrals and partial differential equations for stochastic and quantum phenomena. Journal of Geometric Mechanics, 2019, 11 (2) : 123-137. doi: 10.3934/jgm.2019006

[20]

Stefano Maset. Conditioning and relative error propagation in linear autonomous ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2879-2909. doi: 10.3934/dcdsb.2018165

2021 Impact Factor: 1.588

Metrics

  • PDF downloads (73)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]