March  2014, 34(3): 991-1008. doi: 10.3934/dcds.2014.34.991

Numerical simulation of nonlinear dispersive quantization

1. 

School of Mathematics, University of Minnesota, Minneapolis, MN 55455, United States, United States

Received  November 2012 Revised  April 2013 Published  August 2013

When posed on a periodic domain in one space variable, linear dispersive evolution equations with integral polynomial dispersion relations exhibit strikingly different behaviors depending upon whether the time is rational or irrational relative to the length of the interval, thus producing the Talbot effect of dispersive quantization and fractalization. The goal here is to show that these remarkable phenomena extend to nonlinear dispersive evolution equations. We will present numerical simulations, based on operator splitting methods, of the nonlinear Schrödinger and Korteweg--deVries equations with step function initial data and periodic boundary conditions. For the integrable nonlinear Schrödinger equation, our observations have been rigorously confirmed in a recent paper of Erdoǧan and Tzirakis, [10].
Citation: Gong Chen, Peter J. Olver. Numerical simulation of nonlinear dispersive quantization. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 991-1008. doi: 10.3934/dcds.2014.34.991
References:
[1]

M. V. Berry, Quantum fractals in boxes,, J. Phys. A, 29 (1996), 6617.  doi: 10.1088/0305-4470/29/20/016.  Google Scholar

[2]

M. V. Berry, I. Marzoli and W. Schleich, Quantum carpets, carpets of light,, Physics World, 14 (2001), 39.   Google Scholar

[3]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations,, Geom. Funct. Anal., 3 (1993), 107.  doi: 10.1007/BF01896020.  Google Scholar

[4]

J. Bourgain, Exponential sums and nonlinear Schrödinger equations,, Geom. Funct. Anal., 3 (1993), 157.  doi: 10.1007/BF01896021.  Google Scholar

[5]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation,, Geom. Funct. Anal., 3 (1993), 209.  doi: 10.1007/BF01895688.  Google Scholar

[6]

G. Chen and P. J. Olver, Dispersion of discontinuous periodic waves,, Proc. Roy. Soc. London, 469 (2012).  doi: 10.1098/rspa.2012.0407.  Google Scholar

[7]

C. M. Dafermos, "Hyperbolic Conservation Laws in Continuum Physics,", 3rd ed., (2010).  doi: 10.1007/978-3-642-04048-1.  Google Scholar

[8]

P. G. Drazin and R. S. Johnson, "Solitons: An Introduction,", Cambridge University Press, (1989).   Google Scholar

[9]

M. B. Erdoǧan and N. Tzirakis, Global smoothing for the periodic KdV evolution,, Internat. Math. Res. Notices, ().   Google Scholar

[10]

M. B. Erdoǧan and N. Tzirakis, Talbot effect for the cubic nonlinear Schrödinger equation on the torus,, preprint, (2013).   Google Scholar

[11]

M. B. Erdoǧan, N. Tzirakis and V. Zharnitsky, Nearly linear dynamics of nonlinear dispersive waves,, Physica D, 240 (2011), 1325.  doi: 10.1016/j.physd.2011.05.009.  Google Scholar

[12]

H. Hanche-Olsen and H. Holden, The Kolmogorov-Riesz compactness theorem,, Expo. Math., 28 (2010), 385.  doi: 10.1016/j.exmath.2010.03.001.  Google Scholar

[13]

H. Holden, K. H. Karlsen, K.-A. Lie and N. H. Risebro, "Splitting Methods for Partial Differential Equations with Rough Solutions: Analysis and MATLAB Programs,", European Mathematical Society Publ., (2010).  doi: 10.4171/078.  Google Scholar

[14]

H. Holden, K. H. Karlsen and N. H. Risebro, Operator splitting methods for generalized Korteweg-de Vries equations,, J. Comput. Phys., 153 (1999), 203.  doi: 10.1006/jcph.1999.6273.  Google Scholar

[15]

H. Holden, K. H. Karlsen, N. H. Risebro and T. Tao, Operator splitting for the KdV equation,, Math. Comp., 80 (2011), 821.  doi: 10.1090/S0025-5718-2010-02402-0.  Google Scholar

[16]

H. Holden, U. Koley and N. H. Risebro, Convergence of a fully discrete finite difference scheme for the Korteweg-de Vries equation,, preprint, (2012).   Google Scholar

[17]

H. Holden, C. Lubich and N. H. Risebro, Operator splitting for partial differential equations with Burgers nonlinearity,, Math. Comp., 82 (2013), 173.  doi: 10.1090/S0025-5718-2012-02624-X.  Google Scholar

[18]

L. Kapitanski and I. Rodnianski, Does a quantum particle know the time?,, in, 109 (1999), 355.  doi: 10.1007/978-1-4612-1544-8_14.  Google Scholar

[19]

P. D. Lax and C. D. Levermore, The small dispersion limit of the Korteweg-deVries equation I, II, III,, Commun. Pure Appl. Math., 36 (1983), 253.  doi: 10.1002/cpa.3160360302.  Google Scholar

[20]

C. Lubich, On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations,, Math. Comp., 77 (2008), 2141.  doi: 10.1090/S0025-5718-08-02101-7.  Google Scholar

[21]

K. D. T.-R. McLaughlin and N. J. E. Pitt, On ringing effects near jump discontinuities for periodic solutions to dispersive partial differential equations,, preprint, (2011).   Google Scholar

[22]

P. J. Olver, Dispersive quantization,, Amer. Math. Monthly, 117 (2010), 599.  doi: 10.4169/000298910X496723.  Google Scholar

[23]

K. I. Oskolkov, A class of I.M. Vinogradov's series and its applications in harmonic analysis,, in, 19 (1992), 353.  doi: 10.1007/978-1-4612-2966-7_16.  Google Scholar

[24]

K. Oskolkov, Schrödinger equation and oscillatory Hilbert transforms of second degree,, J. Fourier Anal. Appl., 4 (1998), 341.  doi: 10.1007/BF02476032.  Google Scholar

[25]

I. Rodnianski, Fractal solutions of the Schrödinger equation,, Contemp. Math., 255 (2000), 181.  doi: 10.1090/conm/255/03981.  Google Scholar

[26]

J. Smoller, "Shock Waves and Reaction-Diffusion Equations,", 2nd edition, (1994).   Google Scholar

[27]

H. F. Talbot, Facts related to optical science. No. IV,, Philos. Mag., 9 (1836), 401.  doi: 10.1080/14786443608649032.  Google Scholar

[28]

M. Taylor, The Schrödinger equation on spheres,, Pacific J. Math., 209 (2003), 145.  doi: 10.2140/pjm.2003.209.145.  Google Scholar

[29]

I. M. Vinogradov, "The Method of Trigonometrical Sums in the Theory of Numbers,", Dover Publ., (2004).   Google Scholar

[30]

G. B. Whitham, "Linear and Nonlinear Waves,", John Wiley & Sons, (1974).   Google Scholar

[31]

Y. Zhou, Uniqueness of weak solution of the KdV equation,, Internat. Math. Res. Notices, 1997 (1997), 271.  doi: 10.1155/S1073792897000202.  Google Scholar

show all references

References:
[1]

M. V. Berry, Quantum fractals in boxes,, J. Phys. A, 29 (1996), 6617.  doi: 10.1088/0305-4470/29/20/016.  Google Scholar

[2]

M. V. Berry, I. Marzoli and W. Schleich, Quantum carpets, carpets of light,, Physics World, 14 (2001), 39.   Google Scholar

[3]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. I. Schrödinger equations,, Geom. Funct. Anal., 3 (1993), 107.  doi: 10.1007/BF01896020.  Google Scholar

[4]

J. Bourgain, Exponential sums and nonlinear Schrödinger equations,, Geom. Funct. Anal., 3 (1993), 157.  doi: 10.1007/BF01896021.  Google Scholar

[5]

J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. II. The KdV-equation,, Geom. Funct. Anal., 3 (1993), 209.  doi: 10.1007/BF01895688.  Google Scholar

[6]

G. Chen and P. J. Olver, Dispersion of discontinuous periodic waves,, Proc. Roy. Soc. London, 469 (2012).  doi: 10.1098/rspa.2012.0407.  Google Scholar

[7]

C. M. Dafermos, "Hyperbolic Conservation Laws in Continuum Physics,", 3rd ed., (2010).  doi: 10.1007/978-3-642-04048-1.  Google Scholar

[8]

P. G. Drazin and R. S. Johnson, "Solitons: An Introduction,", Cambridge University Press, (1989).   Google Scholar

[9]

M. B. Erdoǧan and N. Tzirakis, Global smoothing for the periodic KdV evolution,, Internat. Math. Res. Notices, ().   Google Scholar

[10]

M. B. Erdoǧan and N. Tzirakis, Talbot effect for the cubic nonlinear Schrödinger equation on the torus,, preprint, (2013).   Google Scholar

[11]

M. B. Erdoǧan, N. Tzirakis and V. Zharnitsky, Nearly linear dynamics of nonlinear dispersive waves,, Physica D, 240 (2011), 1325.  doi: 10.1016/j.physd.2011.05.009.  Google Scholar

[12]

H. Hanche-Olsen and H. Holden, The Kolmogorov-Riesz compactness theorem,, Expo. Math., 28 (2010), 385.  doi: 10.1016/j.exmath.2010.03.001.  Google Scholar

[13]

H. Holden, K. H. Karlsen, K.-A. Lie and N. H. Risebro, "Splitting Methods for Partial Differential Equations with Rough Solutions: Analysis and MATLAB Programs,", European Mathematical Society Publ., (2010).  doi: 10.4171/078.  Google Scholar

[14]

H. Holden, K. H. Karlsen and N. H. Risebro, Operator splitting methods for generalized Korteweg-de Vries equations,, J. Comput. Phys., 153 (1999), 203.  doi: 10.1006/jcph.1999.6273.  Google Scholar

[15]

H. Holden, K. H. Karlsen, N. H. Risebro and T. Tao, Operator splitting for the KdV equation,, Math. Comp., 80 (2011), 821.  doi: 10.1090/S0025-5718-2010-02402-0.  Google Scholar

[16]

H. Holden, U. Koley and N. H. Risebro, Convergence of a fully discrete finite difference scheme for the Korteweg-de Vries equation,, preprint, (2012).   Google Scholar

[17]

H. Holden, C. Lubich and N. H. Risebro, Operator splitting for partial differential equations with Burgers nonlinearity,, Math. Comp., 82 (2013), 173.  doi: 10.1090/S0025-5718-2012-02624-X.  Google Scholar

[18]

L. Kapitanski and I. Rodnianski, Does a quantum particle know the time?,, in, 109 (1999), 355.  doi: 10.1007/978-1-4612-1544-8_14.  Google Scholar

[19]

P. D. Lax and C. D. Levermore, The small dispersion limit of the Korteweg-deVries equation I, II, III,, Commun. Pure Appl. Math., 36 (1983), 253.  doi: 10.1002/cpa.3160360302.  Google Scholar

[20]

C. Lubich, On splitting methods for Schrödinger-Poisson and cubic nonlinear Schrödinger equations,, Math. Comp., 77 (2008), 2141.  doi: 10.1090/S0025-5718-08-02101-7.  Google Scholar

[21]

K. D. T.-R. McLaughlin and N. J. E. Pitt, On ringing effects near jump discontinuities for periodic solutions to dispersive partial differential equations,, preprint, (2011).   Google Scholar

[22]

P. J. Olver, Dispersive quantization,, Amer. Math. Monthly, 117 (2010), 599.  doi: 10.4169/000298910X496723.  Google Scholar

[23]

K. I. Oskolkov, A class of I.M. Vinogradov's series and its applications in harmonic analysis,, in, 19 (1992), 353.  doi: 10.1007/978-1-4612-2966-7_16.  Google Scholar

[24]

K. Oskolkov, Schrödinger equation and oscillatory Hilbert transforms of second degree,, J. Fourier Anal. Appl., 4 (1998), 341.  doi: 10.1007/BF02476032.  Google Scholar

[25]

I. Rodnianski, Fractal solutions of the Schrödinger equation,, Contemp. Math., 255 (2000), 181.  doi: 10.1090/conm/255/03981.  Google Scholar

[26]

J. Smoller, "Shock Waves and Reaction-Diffusion Equations,", 2nd edition, (1994).   Google Scholar

[27]

H. F. Talbot, Facts related to optical science. No. IV,, Philos. Mag., 9 (1836), 401.  doi: 10.1080/14786443608649032.  Google Scholar

[28]

M. Taylor, The Schrödinger equation on spheres,, Pacific J. Math., 209 (2003), 145.  doi: 10.2140/pjm.2003.209.145.  Google Scholar

[29]

I. M. Vinogradov, "The Method of Trigonometrical Sums in the Theory of Numbers,", Dover Publ., (2004).   Google Scholar

[30]

G. B. Whitham, "Linear and Nonlinear Waves,", John Wiley & Sons, (1974).   Google Scholar

[31]

Y. Zhou, Uniqueness of weak solution of the KdV equation,, Internat. Math. Res. Notices, 1997 (1997), 271.  doi: 10.1155/S1073792897000202.  Google Scholar

[1]

Manh Hong Duong, Yulong Lu. An operator splitting scheme for the fractional kinetic Fokker-Planck equation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5707-5727. doi: 10.3934/dcds.2019250

[2]

Daiwen Huang, Jingjun Zhang. Global smooth solutions for the nonlinear Schrödinger equation with magnetic effect. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1753-1773. doi: 10.3934/dcdss.2016073

[3]

Jean-Claude Saut, Jun-Ichi Segata. Asymptotic behavior in time of solution to the nonlinear Schrödinger equation with higher order anisotropic dispersion. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 219-239. doi: 10.3934/dcds.2019009

[4]

Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations & Control Theory, 2016, 5 (3) : 449-461. doi: 10.3934/eect.2016013

[5]

D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563

[6]

Jibin Li, Yan Zhou. Bifurcations and exact traveling wave solutions for the nonlinear Schrödinger equation with fourth-order dispersion and dual power law nonlinearity. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-0. doi: 10.3934/dcdss.2020113

[7]

Yuto Miyatake, Tai Nakagawa, Tomohiro Sogabe, Shao-Liang Zhang. A structure-preserving Fourier pseudo-spectral linearly implicit scheme for the space-fractional nonlinear Schrödinger equation. Journal of Computational Dynamics, 2019, 6 (2) : 361-383. doi: 10.3934/jcd.2019018

[8]

Pavel I. Naumkin, Isahi Sánchez-Suárez. On the critical nongauge invariant nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 807-834. doi: 10.3934/dcds.2011.30.807

[9]

Younghun Hong. Scattering for a nonlinear Schrödinger equation with a potential. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1571-1601. doi: 10.3934/cpaa.2016003

[10]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[11]

Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109

[12]

Andreas C. Aristotelous, Ohannes Karakashian, Steven M. Wise. A mixed discontinuous Galerkin, convex splitting scheme for a modified Cahn-Hilliard equation and an efficient nonlinear multigrid solver. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2211-2238. doi: 10.3934/dcdsb.2013.18.2211

[13]

Mohamad Darwich. On the $L^2$-critical nonlinear Schrödinger Equation with a nonlinear damping. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2377-2394. doi: 10.3934/cpaa.2014.13.2377

[14]

Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104

[15]

Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107

[16]

Patricio Felmer, César Torres. Radial symmetry of ground states for a regional fractional Nonlinear Schrödinger Equation. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2395-2406. doi: 10.3934/cpaa.2014.13.2395

[17]

Olivier Goubet, Wided Kechiche. Uniform attractor for non-autonomous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (2) : 639-651. doi: 10.3934/cpaa.2011.10.639

[18]

Wided Kechiche. Regularity of the global attractor for a nonlinear Schrödinger equation with a point defect. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1233-1252. doi: 10.3934/cpaa.2017060

[19]

Benjamin Dodson. Improved almost Morawetz estimates for the cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2011, 10 (1) : 127-140. doi: 10.3934/cpaa.2011.10.127

[20]

Kazuhiro Kurata, Tatsuya Watanabe. A remark on asymptotic profiles of radial solutions with a vortex to a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 597-610. doi: 10.3934/cpaa.2006.5.597

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]