January  2015, 35(1): 1-23. doi: 10.3934/dcds.2015.35.1

Stability of the rhomboidal symmetric-mass orbit

1. 

275 TMCB, Brigham Young University, Provo, UT 84602, United States, United States

Received  August 2013 Revised  June 2014 Published  August 2014

We study the rhomboidal symmetric-mass $1$, $m$, $1$, $m$ four-body problem in the four-degrees-of-freedom setting, where $0 < m \leq 1$. Under suitable changes of variables, isolated binary collisions at the origin are regularizable. Analytic existence of the orbit in the four-degrees-of-freedom setting is established. We analytically extend a method of Roberts to perform linear stability analysis in this setting. Linear stability is analytically reduced to computing three entries of a $4 \times 4$ matrix related to the monodromy matrix. Additionally, it is shown that the four-degrees-of-freedom setting has a two-degrees-of-freedom invariant set, and linear stability results in the subset comes ``for free'' from the calculation in the full space. The final numerical analysis shows that the four-degrees-of-freedom orbit is linearly unstable except for a very small interval about $m = 0.4$, whereas the two-degrees-of-freedom orbit is linearly stable for all but very small values of $m$.
Citation: Lennard Bakker, Skyler Simmons. Stability of the rhomboidal symmetric-mass orbit. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 1-23. doi: 10.3934/dcds.2015.35.1
References:
[1]

L. F. Bakker, S. Mancuso and S. C. Simmons, Linear stability for some symmetric periodic simultaneous binary collision orbits in the planar pairwise symmetric four-body problem,, J. Math. Anal. Appl., 392 (2012), 136.  doi: 10.1016/j.jmaa.2012.03.022.  Google Scholar

[2]

L. F. Bakker, T. Ouyang, D. Yan and S. Simmons, Existence and stability of symmetric periodic simultaneous binary collision orbits in the planar pairwise symmetric four-body problem,, Celestial Mech. Dynam. Astronom., 110 (2011), 271.  doi: 10.1007/s10569-011-9358-y.  Google Scholar

[3]

L. F. Bakker, T. Ouyang, D. Yan and S. Simmons, Erratum to: Existence and stability of symmetric periodic simultaneous binary collision orbits in the planar pairwise symmetric four-body problem [mr2821623],, Celestial Mech. Dynam. Astronom., 112 (2012), 459.  doi: 10.1007/s10569-012-9402-6.  Google Scholar

[4]

L. F. Bakker, T. Ouyang, D. Yan, S. Simmons and G. E. Roberts, Linear stability for some symmetric periodic simultaneous binary collision orbits in the four-body problem,, Celestial Mech. Dynam. Astronom., 108 (2010), 147.  doi: 10.1007/s10569-010-9298-y.  Google Scholar

[5]

A. Bounemoura, Generic super-exponential stability of invariant tori in Hamiltonian systems,, Ergodic Theory Dynam. Systems, 31 (2011), 1287.  doi: 10.1017/S0143385710000441.  Google Scholar

[6]

M. Hénon, Stability of interplay oribts,, Cel. Mech., 15 (1977), 243.   Google Scholar

[7]

J. Hietarinta and S. Mikkola, Chaos in the one-dimensional gravitational three-body problem,, Chaos, 3 (1993), 183.  doi: 10.1063/1.165984.  Google Scholar

[8]

Y. Long, Index Theory for Symplectic Paths with Applications,, Progress in Mathematics, (2002).  doi: 10.1007/978-3-0348-8175-3.  Google Scholar

[9]

R. Martínez, On the existence of doubly symmetric "Schubart-like'' periodic orbits,, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 943.  doi: 10.3934/dcdsb.2012.17.943.  Google Scholar

[10]

K. R. Meyer, G. R. Hall and D. Offin, Introduction to Hamiltonian Dynamical Systems and the $N$-body Problem,, 2nd edition, (2009).   Google Scholar

[11]

R. Moeckel, A topological existence proof for the Schubart orbits in the collinear three-body problem,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 609.  doi: 10.3934/dcdsb.2008.10.609.  Google Scholar

[12]

T. Ouyang and D. Yan, Periodic solutions with alternating singularities in the collinear four-body problem,, Celestial Mech. Dynam. Astronom., 109 (2011), 229.  doi: 10.1007/s10569-010-9325-z.  Google Scholar

[13]

T. Ouyang, D. Yan and S. Simmons, Periodic solutions with singularities in two dimensions in the $n$-body problem,, Rocky Mtn. J. Math., 42 (2012), 1601.  doi: 10.1216/RMJ-2012-42-5-1601.  Google Scholar

[14]

G. E. Roberts, Linear stability analysis of the figure-eight orbit in the three-body problem,, Ergodic Theory Dynam. Systems, 27 (2007), 1947.  doi: 10.1017/S0143385707000284.  Google Scholar

[15]

A. E. Roy and B. A. Steves, The Caledonian symmetrical double binary four-body problem. I. Surfaces of zero-velocity using the energy integral,, Celestial Mech. Dynam. Astronom., 78 (2000), 299.  doi: 10.1023/A:1011102815021.  Google Scholar

[16]

J. Schubart, Numerische Aufsuchung periodischer Lösungen im Dreikörperproblem,, Astr. Nachr., 283 (1956), 17.  doi: 10.1002/asna.19562830105.  Google Scholar

[17]

M. Shibayama, Minimizing periodic orbits with regularizable collisions in the $n$-body problem,, Arch. Ration. Mech. Anal., 199 (2011), 821.  doi: 10.1007/s00205-010-0334-6.  Google Scholar

[18]

C. L. Siegel and J. K. Moser, Lectures on Celestial Mechanics,, Classics in Mathematics, (1995).   Google Scholar

[19]

C. Simó, New families of solutions in $N$-body problems,, in European Congress of Mathematics, (2000), 101.   Google Scholar

[20]

A. Sivasankaran, B. A. Steves and W. L. Sweatman, A global regularisation for integrating the Caledonian symmetric four-body problem,, Celestial Mech. Dynam. Astronom., 107 (2010), 157.  doi: 10.1007/s10569-010-9270-x.  Google Scholar

[21]

W. L. Sweatman, The symmetrical one-dimensional Newtonian four-body problem: A numerical investigation,, Celestial Mech. Dynam. Astronom., 82 (2002), 179.  doi: 10.1023/A:1014599918133.  Google Scholar

[22]

W. L. Sweatman, A family of symmetrical Schubart-like interplay orbits and their stability in the one-dimensional four-body problem,, Celestial Mech. Dynam. Astronom., 94 (2006), 37.  doi: 10.1007/s10569-005-2289-8.  Google Scholar

[23]

A. Venturelli, A variational proof of the existence of von Schubart's orbit,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 699.  doi: 10.3934/dcdsb.2008.10.699.  Google Scholar

[24]

J. Waldvogel, The rhomboidal symmetric four-body problem,, Celestial Mech. Dynam. Astronom., 113 (2012), 113.  doi: 10.1007/s10569-012-9414-2.  Google Scholar

[25]

D. Yan, Existence and linear stability of the rhomboidal periodic orbit in the planar equal mass four-body problem,, J. Math. Anal. Appl., 388 (2012), 942.  doi: 10.1016/j.jmaa.2011.10.032.  Google Scholar

show all references

References:
[1]

L. F. Bakker, S. Mancuso and S. C. Simmons, Linear stability for some symmetric periodic simultaneous binary collision orbits in the planar pairwise symmetric four-body problem,, J. Math. Anal. Appl., 392 (2012), 136.  doi: 10.1016/j.jmaa.2012.03.022.  Google Scholar

[2]

L. F. Bakker, T. Ouyang, D. Yan and S. Simmons, Existence and stability of symmetric periodic simultaneous binary collision orbits in the planar pairwise symmetric four-body problem,, Celestial Mech. Dynam. Astronom., 110 (2011), 271.  doi: 10.1007/s10569-011-9358-y.  Google Scholar

[3]

L. F. Bakker, T. Ouyang, D. Yan and S. Simmons, Erratum to: Existence and stability of symmetric periodic simultaneous binary collision orbits in the planar pairwise symmetric four-body problem [mr2821623],, Celestial Mech. Dynam. Astronom., 112 (2012), 459.  doi: 10.1007/s10569-012-9402-6.  Google Scholar

[4]

L. F. Bakker, T. Ouyang, D. Yan, S. Simmons and G. E. Roberts, Linear stability for some symmetric periodic simultaneous binary collision orbits in the four-body problem,, Celestial Mech. Dynam. Astronom., 108 (2010), 147.  doi: 10.1007/s10569-010-9298-y.  Google Scholar

[5]

A. Bounemoura, Generic super-exponential stability of invariant tori in Hamiltonian systems,, Ergodic Theory Dynam. Systems, 31 (2011), 1287.  doi: 10.1017/S0143385710000441.  Google Scholar

[6]

M. Hénon, Stability of interplay oribts,, Cel. Mech., 15 (1977), 243.   Google Scholar

[7]

J. Hietarinta and S. Mikkola, Chaos in the one-dimensional gravitational three-body problem,, Chaos, 3 (1993), 183.  doi: 10.1063/1.165984.  Google Scholar

[8]

Y. Long, Index Theory for Symplectic Paths with Applications,, Progress in Mathematics, (2002).  doi: 10.1007/978-3-0348-8175-3.  Google Scholar

[9]

R. Martínez, On the existence of doubly symmetric "Schubart-like'' periodic orbits,, Discrete Contin. Dyn. Syst. Ser. B, 17 (2012), 943.  doi: 10.3934/dcdsb.2012.17.943.  Google Scholar

[10]

K. R. Meyer, G. R. Hall and D. Offin, Introduction to Hamiltonian Dynamical Systems and the $N$-body Problem,, 2nd edition, (2009).   Google Scholar

[11]

R. Moeckel, A topological existence proof for the Schubart orbits in the collinear three-body problem,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 609.  doi: 10.3934/dcdsb.2008.10.609.  Google Scholar

[12]

T. Ouyang and D. Yan, Periodic solutions with alternating singularities in the collinear four-body problem,, Celestial Mech. Dynam. Astronom., 109 (2011), 229.  doi: 10.1007/s10569-010-9325-z.  Google Scholar

[13]

T. Ouyang, D. Yan and S. Simmons, Periodic solutions with singularities in two dimensions in the $n$-body problem,, Rocky Mtn. J. Math., 42 (2012), 1601.  doi: 10.1216/RMJ-2012-42-5-1601.  Google Scholar

[14]

G. E. Roberts, Linear stability analysis of the figure-eight orbit in the three-body problem,, Ergodic Theory Dynam. Systems, 27 (2007), 1947.  doi: 10.1017/S0143385707000284.  Google Scholar

[15]

A. E. Roy and B. A. Steves, The Caledonian symmetrical double binary four-body problem. I. Surfaces of zero-velocity using the energy integral,, Celestial Mech. Dynam. Astronom., 78 (2000), 299.  doi: 10.1023/A:1011102815021.  Google Scholar

[16]

J. Schubart, Numerische Aufsuchung periodischer Lösungen im Dreikörperproblem,, Astr. Nachr., 283 (1956), 17.  doi: 10.1002/asna.19562830105.  Google Scholar

[17]

M. Shibayama, Minimizing periodic orbits with regularizable collisions in the $n$-body problem,, Arch. Ration. Mech. Anal., 199 (2011), 821.  doi: 10.1007/s00205-010-0334-6.  Google Scholar

[18]

C. L. Siegel and J. K. Moser, Lectures on Celestial Mechanics,, Classics in Mathematics, (1995).   Google Scholar

[19]

C. Simó, New families of solutions in $N$-body problems,, in European Congress of Mathematics, (2000), 101.   Google Scholar

[20]

A. Sivasankaran, B. A. Steves and W. L. Sweatman, A global regularisation for integrating the Caledonian symmetric four-body problem,, Celestial Mech. Dynam. Astronom., 107 (2010), 157.  doi: 10.1007/s10569-010-9270-x.  Google Scholar

[21]

W. L. Sweatman, The symmetrical one-dimensional Newtonian four-body problem: A numerical investigation,, Celestial Mech. Dynam. Astronom., 82 (2002), 179.  doi: 10.1023/A:1014599918133.  Google Scholar

[22]

W. L. Sweatman, A family of symmetrical Schubart-like interplay orbits and their stability in the one-dimensional four-body problem,, Celestial Mech. Dynam. Astronom., 94 (2006), 37.  doi: 10.1007/s10569-005-2289-8.  Google Scholar

[23]

A. Venturelli, A variational proof of the existence of von Schubart's orbit,, Discrete Contin. Dyn. Syst. Ser. B, 10 (2008), 699.  doi: 10.3934/dcdsb.2008.10.699.  Google Scholar

[24]

J. Waldvogel, The rhomboidal symmetric four-body problem,, Celestial Mech. Dynam. Astronom., 113 (2012), 113.  doi: 10.1007/s10569-012-9414-2.  Google Scholar

[25]

D. Yan, Existence and linear stability of the rhomboidal periodic orbit in the planar equal mass four-body problem,, J. Math. Anal. Appl., 388 (2012), 942.  doi: 10.1016/j.jmaa.2011.10.032.  Google Scholar

[1]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[2]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[3]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[4]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[5]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[6]

Alberto Bressan, Sondre Tesdal Galtung. A 2-dimensional shape optimization problem for tree branches. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020031

[7]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[8]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[9]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[10]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[11]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[12]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[13]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[14]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[15]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[16]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[17]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[18]

Agnaldo José Ferrari, Tatiana Miguel Rodrigues de Souza. Rotated $ A_n $-lattice codes of full diversity. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020118

[19]

Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013

[20]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]