March  2015, 35(3): 1139-1162. doi: 10.3934/dcds.2015.35.1139

Relativistic pendulum and invariant curves

1. 

Dipartimento di Matematica - Università di Torino, Via Carlo Alberto, 10, 10123 Torino, Italy

Received  January 2014 Revised  August 2014 Published  October 2014

We apply KAM theory to the equation of the forced relativistic pendulum to prove that all the solutions have bounded momentum. Subsequently, we detect the existence of quasiperiodic solutions in a generalized sense. This is achieved using a modified version of the Aubry-Mather theory for compositions of twist maps.
Citation: Stefano Marò. Relativistic pendulum and invariant curves. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1139-1162. doi: 10.3934/dcds.2015.35.1139
References:
[1]

J. M. Alonso and R. Ortega, Unbounded solutions of semilinear equations at resonance, Nonlinearity, 9 (1996), 1099-1111. doi: 10.1088/0951-7715/9/5/003.

[2]

C. Bereanu, P. Jebelean and J. Mawhin, Periodic solutions of pendulum-like perturbations of singular and bounded $\phi$-Laplacians, J. Dynam. Differential Equations, 22 (2010), 463-471. doi: 10.1007/s10884-010-9172-3.

[3]

C. Bereanu and P. J. Torres, Existence of at least two periodic solutions of the forced relativistic pendulum, Proc. Amer. Math. Soc., 140 (2012), 2713-2719. doi: 10.1090/S0002-9939-2011-11101-8.

[4]

H. Brezis and J. Mawhin, Periodic solutions of the forced relativistic pendulum, Differential Integral Equations, 23 (2010), 801-810.

[5]

J. Chu, J. Lei and M. Zhang, The stability of the equilibrium of a nonlinear planar system and application to the relativistic oscillator, J. Differential Equations, 247 (2009), 530-542. doi: 10.1016/j.jde.2008.11.013.

[6]

A. Fonda and R. Toader, Periodic solutions of pendulum-like Hamiltonian systems in the plane, Adv. Nonlinear Stud., 12 (2012), 395-408.

[7]

M. Herman, Sur Les Courbes Invariantes Par Les Difféomorphismes de L'anneau, Vol. 1, vol. 103 of Astérisque, Société Mathématique de France, Paris, 1983.

[8]

M. Herman, Sur Les Courbes Invariantes Par Les Difféomorphismes de L'anneau, Vol. 2,, Astérisque, (). 

[9]

M. Kunze and R. Ortega, Twist mappings with non-periodic angles, in Stability and bifurcation theory for non-autonomous differential equations, vol. 2065 of Lecture Notes in Math., Springer, Berlin, (2013), 265-300. doi: 10.1007/978-3-642-32906-7_5.

[10]

M. Levi, KAM theory for particles in periodic potentials, Ergodic Theory Dynam. Systems, 10 (1990), 777-785. doi: 10.1017/S0143385700005897.

[11]

S. Marò, Coexistence of bounded and unbounded motions in a bouncing ball model, Nonlinearity, 26 (2013), 1439-1448. doi: 10.1088/0951-7715/26/5/1439.

[12]

S. Marò, Periodic solutions of a forced relativistic pendulum via twist dynamics, Topol. Methods Nonlinear Anal., 42 (2013), 51-75.

[13]

J. Mather, Existence of quasiperiodic orbits for twist homeomorphisms of the annulus, Topology, 21 (1982), 457-467. doi: 10.1016/0040-9383(82)90023-4.

[14]

J. Mather, Variational construction of orbits of twist diffeomorphisms, J. Amer. Math. Soc., 4 (1991), 207-263. doi: 10.1090/S0894-0347-1991-1080112-5.

[15]

J. Moser, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1962 (1962), 1-20.

[16]

J. Moser, Selected Chapters in the Calculus of Variations, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2003, Lecture notes by Oliver Knill. doi: 10.1007/978-3-0348-8057-2.

[17]

R. Ortega, Asymmetric oscillators and twist mappings, J. London Math. Soc. (2), 53 (1996), 325-342. doi: 10.1112/jlms/53.2.325.

[18]

R. Ortega, Invariant curves of mappings with averaged small twist, Adv. Nonlinear Stud., 1 (2001), 14-39.

[19]

R. Ortega, Twist mappings, invariant curves and periodic differential equations, in Nonlinear analysis and its applications to differential equations (Lisbon, 1998), vol. 43 of Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Boston, MA, (2001), 85-112.

[20]

P. Torres, Periodic oscillations of the relativistic pendulum with friction, Phys. Lett. A, 372 (2008), 6386-6387. doi: 10.1016/j.physleta.2008.08.060.

[21]

J. You, Invariant tori and Lagrange stability of pendulum-type equations, J. Differential Equations, 85 (1990), 54-65. doi: 10.1016/0022-0396(90)90088-7.

show all references

References:
[1]

J. M. Alonso and R. Ortega, Unbounded solutions of semilinear equations at resonance, Nonlinearity, 9 (1996), 1099-1111. doi: 10.1088/0951-7715/9/5/003.

[2]

C. Bereanu, P. Jebelean and J. Mawhin, Periodic solutions of pendulum-like perturbations of singular and bounded $\phi$-Laplacians, J. Dynam. Differential Equations, 22 (2010), 463-471. doi: 10.1007/s10884-010-9172-3.

[3]

C. Bereanu and P. J. Torres, Existence of at least two periodic solutions of the forced relativistic pendulum, Proc. Amer. Math. Soc., 140 (2012), 2713-2719. doi: 10.1090/S0002-9939-2011-11101-8.

[4]

H. Brezis and J. Mawhin, Periodic solutions of the forced relativistic pendulum, Differential Integral Equations, 23 (2010), 801-810.

[5]

J. Chu, J. Lei and M. Zhang, The stability of the equilibrium of a nonlinear planar system and application to the relativistic oscillator, J. Differential Equations, 247 (2009), 530-542. doi: 10.1016/j.jde.2008.11.013.

[6]

A. Fonda and R. Toader, Periodic solutions of pendulum-like Hamiltonian systems in the plane, Adv. Nonlinear Stud., 12 (2012), 395-408.

[7]

M. Herman, Sur Les Courbes Invariantes Par Les Difféomorphismes de L'anneau, Vol. 1, vol. 103 of Astérisque, Société Mathématique de France, Paris, 1983.

[8]

M. Herman, Sur Les Courbes Invariantes Par Les Difféomorphismes de L'anneau, Vol. 2,, Astérisque, (). 

[9]

M. Kunze and R. Ortega, Twist mappings with non-periodic angles, in Stability and bifurcation theory for non-autonomous differential equations, vol. 2065 of Lecture Notes in Math., Springer, Berlin, (2013), 265-300. doi: 10.1007/978-3-642-32906-7_5.

[10]

M. Levi, KAM theory for particles in periodic potentials, Ergodic Theory Dynam. Systems, 10 (1990), 777-785. doi: 10.1017/S0143385700005897.

[11]

S. Marò, Coexistence of bounded and unbounded motions in a bouncing ball model, Nonlinearity, 26 (2013), 1439-1448. doi: 10.1088/0951-7715/26/5/1439.

[12]

S. Marò, Periodic solutions of a forced relativistic pendulum via twist dynamics, Topol. Methods Nonlinear Anal., 42 (2013), 51-75.

[13]

J. Mather, Existence of quasiperiodic orbits for twist homeomorphisms of the annulus, Topology, 21 (1982), 457-467. doi: 10.1016/0040-9383(82)90023-4.

[14]

J. Mather, Variational construction of orbits of twist diffeomorphisms, J. Amer. Math. Soc., 4 (1991), 207-263. doi: 10.1090/S0894-0347-1991-1080112-5.

[15]

J. Moser, On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II, 1962 (1962), 1-20.

[16]

J. Moser, Selected Chapters in the Calculus of Variations, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2003, Lecture notes by Oliver Knill. doi: 10.1007/978-3-0348-8057-2.

[17]

R. Ortega, Asymmetric oscillators and twist mappings, J. London Math. Soc. (2), 53 (1996), 325-342. doi: 10.1112/jlms/53.2.325.

[18]

R. Ortega, Invariant curves of mappings with averaged small twist, Adv. Nonlinear Stud., 1 (2001), 14-39.

[19]

R. Ortega, Twist mappings, invariant curves and periodic differential equations, in Nonlinear analysis and its applications to differential equations (Lisbon, 1998), vol. 43 of Progr. Nonlinear Differential Equations Appl., Birkhäuser Boston, Boston, MA, (2001), 85-112.

[20]

P. Torres, Periodic oscillations of the relativistic pendulum with friction, Phys. Lett. A, 372 (2008), 6386-6387. doi: 10.1016/j.physleta.2008.08.060.

[21]

J. You, Invariant tori and Lagrange stability of pendulum-type equations, J. Differential Equations, 85 (1990), 54-65. doi: 10.1016/0022-0396(90)90088-7.

[1]

Ugo Bessi. Viscous Aubry-Mather theory and the Vlasov equation. Discrete and Continuous Dynamical Systems, 2014, 34 (2) : 379-420. doi: 10.3934/dcds.2014.34.379

[2]

Hans Koch, Rafael De La Llave, Charles Radin. Aubry-Mather theory for functions on lattices. Discrete and Continuous Dynamical Systems, 1997, 3 (1) : 135-151. doi: 10.3934/dcds.1997.3.135

[3]

Fabio Camilli, Annalisa Cesaroni. A note on singular perturbation problems via Aubry-Mather theory. Discrete and Continuous Dynamical Systems, 2007, 17 (4) : 807-819. doi: 10.3934/dcds.2007.17.807

[4]

Yasuhiro Fujita, Katsushi Ohmori. Inequalities and the Aubry-Mather theory of Hamilton-Jacobi equations. Communications on Pure and Applied Analysis, 2009, 8 (2) : 683-688. doi: 10.3934/cpaa.2009.8.683

[5]

Kaizhi Wang, Lin Wang, Jun Yan. Aubry-Mather theory for contact Hamiltonian systems II. Discrete and Continuous Dynamical Systems, 2022, 42 (2) : 555-595. doi: 10.3934/dcds.2021128

[6]

Michele V. Bartuccelli, G. Gentile, Kyriakos V. Georgiou. Kam theory, Lindstedt series and the stability of the upside-down pendulum. Discrete and Continuous Dynamical Systems, 2003, 9 (2) : 413-426. doi: 10.3934/dcds.2003.9.413

[7]

Artur O. Lopes, Rafael O. Ruggiero. Large deviations and Aubry-Mather measures supported in nonhyperbolic closed geodesics. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1155-1174. doi: 10.3934/dcds.2011.29.1155

[8]

Bassam Fayad. Discrete and continuous spectra on laminations over Aubry-Mather sets. Discrete and Continuous Dynamical Systems, 2008, 21 (3) : 823-834. doi: 10.3934/dcds.2008.21.823

[9]

Diogo A. Gomes. Viscosity solution methods and the discrete Aubry-Mather problem. Discrete and Continuous Dynamical Systems, 2005, 13 (1) : 103-116. doi: 10.3934/dcds.2005.13.103

[10]

Siniša Slijepčević. The Aubry-Mather theorem for driven generalized elastic chains. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2983-3011. doi: 10.3934/dcds.2014.34.2983

[11]

Mads R. Bisgaard. Mather theory and symplectic rigidity. Journal of Modern Dynamics, 2019, 15: 165-207. doi: 10.3934/jmd.2019018

[12]

Andrea Davini, Maxime Zavidovique. Weak KAM theory for nonregular commuting Hamiltonians. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 57-94. doi: 10.3934/dcdsb.2013.18.57

[13]

Diogo Gomes, Levon Nurbekyan. An infinite-dimensional weak KAM theory via random variables. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6167-6185. doi: 10.3934/dcds.2016069

[14]

Xifeng Su, Lin Wang, Jun Yan. Weak KAM theory for HAMILTON-JACOBI equations depending on unknown functions. Discrete and Continuous Dynamical Systems, 2016, 36 (11) : 6487-6522. doi: 10.3934/dcds.2016080

[15]

Maxime Zavidovique. Existence of $C^{1,1}$ critical subsolutions in discrete weak KAM theory. Journal of Modern Dynamics, 2010, 4 (4) : 693-714. doi: 10.3934/jmd.2010.4.693

[16]

Luigi Chierchia, Gabriella Pinzari. Properly-degenerate KAM theory (following V. I. Arnold). Discrete and Continuous Dynamical Systems - S, 2010, 3 (4) : 545-578. doi: 10.3934/dcdss.2010.3.545

[17]

Shao-Yuan Huang, Shin-Hwa Wang. On S-shaped bifurcation curves for a two-point boundary value problem arising in a theory of thermal explosion. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 4839-4858. doi: 10.3934/dcds.2015.35.4839

[18]

Robert M. Strain. Coordinates in the relativistic Boltzmann theory. Kinetic and Related Models, 2011, 4 (1) : 345-359. doi: 10.3934/krm.2011.4.345

[19]

Krešimir Burazin, Marko Vrdoljak. Homogenisation theory for Friedrichs systems. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1017-1044. doi: 10.3934/cpaa.2014.13.1017

[20]

Ryszard Rudnicki. An ergodic theory approach to chaos. Discrete and Continuous Dynamical Systems, 2015, 35 (2) : 757-770. doi: 10.3934/dcds.2015.35.757

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (131)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]