March  2015, 35(3): 1163-1177. doi: 10.3934/dcds.2015.35.1163

Robust transitivity of maps of the real line

1. 

Universidad Centroccidental Lisandro Alvarado, Decanato de Ciencias y Tecnología, Barquisimeto, Venezuela

Received  February 2014 Revised  March 2014 Published  October 2014

In the set of continuously differentiable maps of the real line with a discontinuity, equipped with the uniform topology, it will be shown that the subset of transitive ones has nonempty interior.
Citation: Sergio Muñoz. Robust transitivity of maps of the real line. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1163-1177. doi: 10.3934/dcds.2015.35.1163
References:
[1]

J. Aaronson, An Introduction to Infinite Ergodic Theory,, Mathematical Surveys and Monographs, (1997). doi: 10.1090/surv/050. Google Scholar

[2]

R. Adler, F-expansions revisited,, Lecture Notes in Math., 318 (1973), 1. Google Scholar

[3]

R. Adler and B. Weiss, The ergodic infinite measure preserving transformation of Boole,, Israel Journal of Math, 16 (1973), 263. doi: 10.1007/BF02756706. Google Scholar

[4]

D. V. Anosov, Geodesic flows on closed Riemann manifolds with negative curvature,, Trudy Mat. Inst. Steklov., 90 (1967). Google Scholar

[5]

C. Bonatti, L. Díaz and E. Pujals, A $C^1$-generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources,, Ann. of Math., 158 (2003), 355. doi: 10.4007/annals.2003.158.355. Google Scholar

[6]

G. Boole, On the comparison of transcendents with certain applications to the theory of definite integrals,, Philos. Trans. Roy. Soc. London, 8 (1856), 461. doi: 10.1098/rspl.1856.0122. Google Scholar

[7]

L. Díaz, E. Pujals and R. Ures, Partial hyperbolicity and robust transitivity,, Acta Math., 183 (1999), 1. doi: 10.1007/BF02392945. Google Scholar

[8]

R. Devaney, The baker transformation and a mapping associated to the restricted three-body problem,, Comm. Math. Phys., 80 (1981), 465. doi: 10.1007/BF01941657. Google Scholar

[9]

M. V. Jakobson, On Smooth mappings of the circle into itself,, Math. USSR Sb, 85 (1971), 163. Google Scholar

[10]

R. Mañe, Contributions to the stability conjecture,, Topology, 17 (1978), 383. doi: 10.1016/0040-9383(78)90005-8. Google Scholar

[11]

P. Mendes, On Anosov diffeomorphisms on the plane,, Proc. Amer. Math. Soc., 63 (1977), 231. doi: 10.1090/S0002-9939-1977-0461585-X. Google Scholar

[12]

M. Peixoto, On structural stability,, Ann. of Math., 69 (1959), 199. doi: 10.2307/1970100. Google Scholar

[13]

E. Pujals, From hyperbolicity to dominated splitting,, Fields Institute Communications, 51 (2007), 89. Google Scholar

[14]

F. Schweiger, Numbertheoretical endomorphisms with $\sigma$-finite invariant measure,, Israel Journal of Math., 21 (1975), 308. doi: 10.1007/BF02757992. Google Scholar

[15]

F. Schweiger, tan ($x$) is ergodic,, Proceedings of the American Mathematical Society, 71 (1978), 54. Google Scholar

[16]

F. Schweiger, Ergodic Theory of Fibred Systems and Metric Number Theory,, Oxford Science Publications, (1995). Google Scholar

[17]

M. Shub, Topologically Transitive Diffeomorphisms of $T^4$,, Lecture Notes in Math., (1971). Google Scholar

[18]

M. Thaler, Estimates of the invariant densities of endomorphisms with indifferent fixed point,, Israel Journal of Math., 37 (1980), 303. doi: 10.1007/BF02788928. Google Scholar

[19]

M. Thaler, Transformations on [0,1] with infinite invariant measures,, Israel Journal of Math., 46 (1983), 67. doi: 10.1007/BF02760623. Google Scholar

[20]

T.-Y. Li and F. Schweiger, The generalized transformation of Boole is ergodic,, Manuscripta Math., 25 (1978), 161. doi: 10.1007/BF01168607. Google Scholar

[21]

R. Zweimüller, Ergodic structure and invariant densities of non-Markoviant interval maps with indifferent fixed points,, Nonlinearity, 11 (1998), 1263. doi: 10.1088/0951-7715/11/5/005. Google Scholar

[22]

R. Zweimüller, Ergodic properties of infinite measure-preserving interval maps with indifferent fixed points,, Ergodic Theory & Dynamical Systems, 20 (2000), 1519. doi: 10.1017/S0143385700000821. Google Scholar

show all references

References:
[1]

J. Aaronson, An Introduction to Infinite Ergodic Theory,, Mathematical Surveys and Monographs, (1997). doi: 10.1090/surv/050. Google Scholar

[2]

R. Adler, F-expansions revisited,, Lecture Notes in Math., 318 (1973), 1. Google Scholar

[3]

R. Adler and B. Weiss, The ergodic infinite measure preserving transformation of Boole,, Israel Journal of Math, 16 (1973), 263. doi: 10.1007/BF02756706. Google Scholar

[4]

D. V. Anosov, Geodesic flows on closed Riemann manifolds with negative curvature,, Trudy Mat. Inst. Steklov., 90 (1967). Google Scholar

[5]

C. Bonatti, L. Díaz and E. Pujals, A $C^1$-generic dichotomy for diffeomorphisms: Weak forms of hyperbolicity or infinitely many sinks or sources,, Ann. of Math., 158 (2003), 355. doi: 10.4007/annals.2003.158.355. Google Scholar

[6]

G. Boole, On the comparison of transcendents with certain applications to the theory of definite integrals,, Philos. Trans. Roy. Soc. London, 8 (1856), 461. doi: 10.1098/rspl.1856.0122. Google Scholar

[7]

L. Díaz, E. Pujals and R. Ures, Partial hyperbolicity and robust transitivity,, Acta Math., 183 (1999), 1. doi: 10.1007/BF02392945. Google Scholar

[8]

R. Devaney, The baker transformation and a mapping associated to the restricted three-body problem,, Comm. Math. Phys., 80 (1981), 465. doi: 10.1007/BF01941657. Google Scholar

[9]

M. V. Jakobson, On Smooth mappings of the circle into itself,, Math. USSR Sb, 85 (1971), 163. Google Scholar

[10]

R. Mañe, Contributions to the stability conjecture,, Topology, 17 (1978), 383. doi: 10.1016/0040-9383(78)90005-8. Google Scholar

[11]

P. Mendes, On Anosov diffeomorphisms on the plane,, Proc. Amer. Math. Soc., 63 (1977), 231. doi: 10.1090/S0002-9939-1977-0461585-X. Google Scholar

[12]

M. Peixoto, On structural stability,, Ann. of Math., 69 (1959), 199. doi: 10.2307/1970100. Google Scholar

[13]

E. Pujals, From hyperbolicity to dominated splitting,, Fields Institute Communications, 51 (2007), 89. Google Scholar

[14]

F. Schweiger, Numbertheoretical endomorphisms with $\sigma$-finite invariant measure,, Israel Journal of Math., 21 (1975), 308. doi: 10.1007/BF02757992. Google Scholar

[15]

F. Schweiger, tan ($x$) is ergodic,, Proceedings of the American Mathematical Society, 71 (1978), 54. Google Scholar

[16]

F. Schweiger, Ergodic Theory of Fibred Systems and Metric Number Theory,, Oxford Science Publications, (1995). Google Scholar

[17]

M. Shub, Topologically Transitive Diffeomorphisms of $T^4$,, Lecture Notes in Math., (1971). Google Scholar

[18]

M. Thaler, Estimates of the invariant densities of endomorphisms with indifferent fixed point,, Israel Journal of Math., 37 (1980), 303. doi: 10.1007/BF02788928. Google Scholar

[19]

M. Thaler, Transformations on [0,1] with infinite invariant measures,, Israel Journal of Math., 46 (1983), 67. doi: 10.1007/BF02760623. Google Scholar

[20]

T.-Y. Li and F. Schweiger, The generalized transformation of Boole is ergodic,, Manuscripta Math., 25 (1978), 161. doi: 10.1007/BF01168607. Google Scholar

[21]

R. Zweimüller, Ergodic structure and invariant densities of non-Markoviant interval maps with indifferent fixed points,, Nonlinearity, 11 (1998), 1263. doi: 10.1088/0951-7715/11/5/005. Google Scholar

[22]

R. Zweimüller, Ergodic properties of infinite measure-preserving interval maps with indifferent fixed points,, Ergodic Theory & Dynamical Systems, 20 (2000), 1519. doi: 10.1017/S0143385700000821. Google Scholar

[1]

Flavio Abdenur, Lorenzo J. Díaz. Pseudo-orbit shadowing in the $C^1$ topology. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 223-245. doi: 10.3934/dcds.2007.17.223

[2]

Lan Wen. A uniform $C^1$ connecting lemma. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 257-265. doi: 10.3934/dcds.2002.8.257

[3]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅰ: Dirichlet and Neumann boundary conditions. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2357-2376. doi: 10.3934/cpaa.2017116

[4]

Anna Kostianko, Sergey Zelik. Inertial manifolds for 1D reaction-diffusion-advection systems. Part Ⅱ: periodic boundary conditions. Communications on Pure & Applied Analysis, 2018, 17 (1) : 285-317. doi: 10.3934/cpaa.2018017

[5]

Grzegorz Graff, Piotr Nowak-Przygodzki. Fixed point indices of iterations of $C^1$ maps in $R^3$. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 843-856. doi: 10.3934/dcds.2006.16.843

[6]

Paul L. Salceanu. Robust uniform persistence in discrete and continuous dynamical systems using Lyapunov exponents. Mathematical Biosciences & Engineering, 2011, 8 (3) : 807-825. doi: 10.3934/mbe.2011.8.807

[7]

Carlangelo Liverani. A footnote on expanding maps. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3741-3751. doi: 10.3934/dcds.2013.33.3741

[8]

Peter Haïssinsky, Kevin M. Pilgrim. An algebraic characterization of expanding Thurston maps. Journal of Modern Dynamics, 2012, 6 (4) : 451-476. doi: 10.3934/jmd.2012.6.451

[9]

Peter Haïssinsky, Kevin M. Pilgrim. Examples of coarse expanding conformal maps. Discrete & Continuous Dynamical Systems - A, 2012, 32 (7) : 2403-2416. doi: 10.3934/dcds.2012.32.2403

[10]

José F. Alves. Stochastic behavior of asymptotically expanding maps. Conference Publications, 2001, 2001 (Special) : 14-21. doi: 10.3934/proc.2001.2001.14

[11]

Yushi Nakano, Shota Sakamoto. Spectra of expanding maps on Besov spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 1779-1797. doi: 10.3934/dcds.2019077

[12]

Ian Melbourne, V. Niţicâ, Andrei Török. A note about stable transitivity of noncompact extensions of hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2006, 14 (2) : 355-363. doi: 10.3934/dcds.2006.14.355

[13]

P. Adda, J. L. Dimi, A. Iggidir, J. C. Kamgang, G. Sallet, J. J. Tewa. General models of host-parasite systems. Global analysis. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 1-17. doi: 10.3934/dcdsb.2007.8.1

[14]

Libin Wang. Breakdown of $C^1$ solution to the Cauchy problem for quasilinear hyperbolic systems with characteristics with constant multiplicity. Communications on Pure & Applied Analysis, 2003, 2 (1) : 77-89. doi: 10.3934/cpaa.2003.2.77

[15]

Rafael De La Llave, Michael Shub, Carles Simó. Entropy estimates for a family of expanding maps of the circle. Discrete & Continuous Dynamical Systems - B, 2008, 10 (2&3, September) : 597-608. doi: 10.3934/dcdsb.2008.10.597

[16]

Michael Blank. Finite rank approximations of expanding maps with neutral singularities. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 749-762. doi: 10.3934/dcds.2008.21.749

[17]

Antonio Pumariño, José Ángel Rodríguez, Enrique Vigil. Renormalizable Expanding Baker Maps: Coexistence of strange attractors. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1651-1678. doi: 10.3934/dcds.2017068

[18]

Xu Zhang, Yuming Shi, Guanrong Chen. Coupled-expanding maps under small perturbations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 1291-1307. doi: 10.3934/dcds.2011.29.1291

[19]

Viviane Baladi, Daniel Smania. Smooth deformations of piecewise expanding unimodal maps. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 685-703. doi: 10.3934/dcds.2009.23.685

[20]

Yong Fang. On smooth conjugacy of expanding maps in higher dimensions. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 687-697. doi: 10.3934/dcds.2011.30.687

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]