Citation: |
[1] |
J. V. Boussinesq, Theorie de l'intermenscence liquide appelee onde solitaire ou de translation, se propageant dans un canal rectangulaire, C. R. Acad. Sci. Paris, 72 (1871), 755-799. |
[2] |
Y. Cho and T. Ozawa, Remarks on the Modified improved Boussinesq equations in one space dimension, Proceeding of Royal society A, 462 (2006), 1949-1963.doi: 10.1098/rspa.2006.1675. |
[3] |
F. M. Christ and M. Weinstein, Dispersion of small amplitude solutions of the generalized Korteweg-de-Vries equation, Journ. funct. Anal., 100 (1991), 87-109.doi: 10.1016/0022-1236(91)90103-C. |
[4] |
C. I. Christov, G. A Maugin and M. G. Velande, Well-posed Boussinesq paradigm with purely spatial higher-order derivatives, Phys. Rev., E54 (1996), 3621-3638.doi: 10.1103/PhysRevE.54.3621. |
[5] |
C. I. Christov, G. A. Maugin and A. V. Porubov, On Boussinesq's paradigm in nonlinear wave propagation, C. R. Mecanique, 335 (2007), 521-535.doi: 10.1016/j.crme.2007.08.006. |
[6] |
P. Daripa and W. Hua, A numerical method for solving an ill posed Boussinesq equation arising in water waves and nonlinear lattice, Appl. Math. Comput., 101 (1999), 159-207.doi: 10.1016/S0096-3003(98)10070-X. |
[7] |
P. Daripa and R. K. Dash, Weakly non-local solitary wave solutions of a singularly perturbed Boussinesq equation, Math. Comput. Simulation, 55 (2001), 393-405.doi: 10.1016/S0378-4754(00)00288-3. |
[8] |
P. Daripa, Higher-order Boussinesq equations for two-way propagation of shallow water waves, Euro. J. Mech. B Fluids, 25 (2006), 1008-1021.doi: 10.1016/j.euromechflu.2006.02.003. |
[9] |
A. Dé Godefroy, Blow up of solutions of a generalized Boussinesq equation, IMA Journ. Math. Appl. Math, 60 (1998), 123-138.doi: 10.1093/imamat/60.2.123. |
[10] |
R. S. Johnson, A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge University Press, 1997.doi: 10.1017/CBO9780511624056. |
[11] |
O. Y. Kamenov, Exact periodic solutions of sixth-order generalized Boussinesq equation, J. Phys. A: Math. Theor., 42 (2009), 375501, 11 pp.doi: 10.1088/1751-8113/42/37/375501. |
[12] |
T. Kato, On nonlinear Schrodinger equation II. $\mathbbH^s$ solutions and unconditional well posedness, J. Anal. Math., 67 (1995), 281-306.doi: 10.1007/BF02787794. |
[13] |
H. A. Levine, Instability and nonexistence of global solutions to nonlinear wave equations of the form $Pu_{t t}= -Au+F(u)$, Trans. Amer. Math. Soc., 192 (1974), 1-21. |
[14] |
Y. Liu, Existence and Blow up of solutions of a nonlinear Pocchahammer-Chree equation, Indianna Univ. Math. Journ., 45 (1996), 797-815.doi: 10.1512/iumj.1996.45.1121. |
[15] |
V. G. Makhankov, Dynamics of classical solutions (in non integrable systems), Physics Reports, 35 (1978), 1-128.doi: 10.1016/0370-1573(78)90074-1. |
[16] |
G. A. Maugin, Nonlinear Waves in Elastic Crystal, Oxford Mathematical Monographs Series, Oxford University Press, Oxford, 1999. |
[17] |
R. L. Pego and M. I. Weinstein, Eigenvalues and instabilities of solitary waves, Phil. Trans. R. Soc. Lond. Ser. A, 340, (1992), 47-94.doi: 10.1098/rsta.1992.0055. |
[18] |
M. Reed, Abstract Nonlinear Wave Equations, Lecture Notes in Mathematics, 507, Springer-Verlag, Berlin-New York, 1976. |
[19] |
G. B. Whitham, Linear and Nonlinear Waves, John Wiley and Sons, New York, 1974. |