March  2015, 35(3): 1193-1230. doi: 10.3934/dcds.2015.35.1193

Center manifolds and attractivity for quasilinear parabolic problems with fully nonlinear dynamical boundary conditions

1. 

Department of Mathematics, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany

Received  February 2014 Revised  June 2014 Published  October 2014

We construct and investigate local invariant manifolds for a large class of quasilinear parabolic problems with fully nonlinear dynamical boundary conditions and study their attractivity properties. In a companion paper we have developed the corresponding solution theory. Examples for the class of systems considered are reaction--diffusion systems or phase field models with dynamical boundary conditions and to the two--phase Stefan problem with surface tension.
Citation: Roland Schnaubelt. Center manifolds and attractivity for quasilinear parabolic problems with fully nonlinear dynamical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1193-1230. doi: 10.3934/dcds.2015.35.1193
References:
[1]

H. Amann, Dynamic theory of quasilinear parabolic systems. III. Global existence,, Math. Z., 202 (1989), 219.  doi: 10.1007/BF01215256.  Google Scholar

[2]

H. Amann, Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems,, Differential Integral Equations, 3 (1990), 13.   Google Scholar

[3]

P. Bates and C. Jones, Invariant manifolds for semilinear partial differential equations,, in Dynamics Reported. A Series in Dynamical Systems and their Applications, 2 (1989), 1.   Google Scholar

[4]

R. Denk, M. Hieber and J. Prüss, Optimal $L_p$-$L_q$ estimates for parabolic boundary value problems with inhomogeneous data,, Math. Z., 257 (2007), 193.  doi: 10.1007/s00209-007-0120-9.  Google Scholar

[5]

R. Denk, J. Prüss and R. Zacher, Maximal $L_p$-regularity of parabolic problems with boundary dynamics of relaxation type,, J. Funct. Anal., 255 (2008), 3149.  doi: 10.1016/j.jfa.2008.07.012.  Google Scholar

[6]

J. Escher and G. Simonett, A center manifold analysis for the Mullins-Sekerka model,, J. Differential Equations, 143 (1998), 267.  doi: 10.1006/jdeq.1997.3373.  Google Scholar

[7]

J. Escher, J. Prüss and G. Simonett, Analytic solutions for a Stefan problem with Gibbs-Thomson correction,, J. Reine Angew. Math., 563 (2003), 1.  doi: 10.1515/crll.2003.082.  Google Scholar

[8]

R. Johnson, Y. Latushkin and R. Schnaubelt, Reduction principle and asymptotic phase for center manifolds of parabolic systems with nonlinear boundary conditions,, J. Dynam. Differential Equations, 26 (2014), 243.  doi: 10.1007/s10884-014-9360-7.  Google Scholar

[9]

Y. Latushkin, J. Prüss and R. Schnaubelt, Stable and unstable manifolds for quasilinear parabolic systems with fully nonlinear boundary conditions,, J. Evolution Equations, 6 (2006), 537.  doi: 10.1007/s00028-006-0272-9.  Google Scholar

[10]

Y. Latushkin, J. Prüss and R. Schnaubelt, Center manifolds and dynamics near equilibria of quasilinear parabolic systems with fully nonlinear boundary conditions,, Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 595.  doi: 10.3934/dcdsb.2008.9.595.  Google Scholar

[11]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems,, Birkhäuser, (1995).  doi: 10.1007/978-3-0348-9234-6.  Google Scholar

[12]

A. Mielke, Locally invariant manifolds for quasilinear parabolic equations,, Rocky Mountain J. Math., 21 (1991), 707.  doi: 10.1216/rmjm/1181072962.  Google Scholar

[13]

M. Meyries and R. Schnaubelt, Maximal regularity with temporal weights for parabolic problems with inhomogeneous boundary conditions,, Math. Nachr., 285 (2012), 1032.  doi: 10.1002/mana.201100057.  Google Scholar

[14]

K. Palmer, On the stability of the center manifold,, Z. Angew. Math. Phys., 38 (1987), 273.  doi: 10.1007/BF00945412.  Google Scholar

[15]

J. Püss and G. Simonett, Stability of equilibria for the Stefan problem with surface tension,, SIAM J. Math. Anal., 40 (2008), 675.  doi: 10.1137/070700632.  Google Scholar

[16]

J. Prüss, G. Simonett and R. Zacher, On convergence of solutions to equilibria for quasilinear parabolic problems,, J. Differential Equations, 246 (2009), 3902.  doi: 10.1016/j.jde.2008.10.034.  Google Scholar

[17]

J. Prüss, G. Simonett and R. Zacher, Qualitative behavior of solutions for thermodynamically consistent Stefan problems with surface tension,, Arch. Ration. Mech. Anal., 207 (2013), 611.  doi: 10.1007/s00205-012-0571-y.  Google Scholar

[18]

J. Prüss, M. Wilke and G. Simonett, Invariant foliations near normally hyperbolic equilibria for quasilinear parabolic problems,, Adv. Nonlinear Stud., 13 (2013), 231.   Google Scholar

[19]

M. Renardy, A centre manifold theorem for hyperbolic PDEs,, Proc. Roy. Soc. Edinburgh Sect. A, 122 (1992), 363.  doi: 10.1017/S0308210500021168.  Google Scholar

[20]

R. Schnaubelt, Stable and unstable manifolds for quasilinear parabolic problems with fully nonlinear dynamical boundary conditions,, submitted, ().   Google Scholar

[21]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations,, Springer-Verlag, (2002).  doi: 10.1007/978-1-4757-5037-9.  Google Scholar

[22]

G. Simonett, Invariant manifolds and bifurcation for quasilinear reaction-diffusion systems,, Nonlinear Anal., 23 (1994), 515.  doi: 10.1016/0362-546X(94)90092-2.  Google Scholar

[23]

G. Simonett, Center manifolds for quasilinear reaction-diffusion systems,, Differential Integral Equations, 8 (1995), 753.   Google Scholar

[24]

H. Triebel, Interpolation Theory,Function Spaces, Differential Operators,, J. A. Barth, (1995).   Google Scholar

[25]

A. Vanderbauwhede and S. A. van Gils, Center manifolds and contractions on a scale of Banach spaces,, J. Funct. Anal., 72 (1987), 209.  doi: 10.1016/0022-1236(87)90086-3.  Google Scholar

[26]

A. Vanderbauwhede and G. Iooss, Center manifolds in infinite dimensions,, in Dynamics Reported: Expositions in Dynamical Systems (New Series), 1 (1992), 125.   Google Scholar

show all references

References:
[1]

H. Amann, Dynamic theory of quasilinear parabolic systems. III. Global existence,, Math. Z., 202 (1989), 219.  doi: 10.1007/BF01215256.  Google Scholar

[2]

H. Amann, Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems,, Differential Integral Equations, 3 (1990), 13.   Google Scholar

[3]

P. Bates and C. Jones, Invariant manifolds for semilinear partial differential equations,, in Dynamics Reported. A Series in Dynamical Systems and their Applications, 2 (1989), 1.   Google Scholar

[4]

R. Denk, M. Hieber and J. Prüss, Optimal $L_p$-$L_q$ estimates for parabolic boundary value problems with inhomogeneous data,, Math. Z., 257 (2007), 193.  doi: 10.1007/s00209-007-0120-9.  Google Scholar

[5]

R. Denk, J. Prüss and R. Zacher, Maximal $L_p$-regularity of parabolic problems with boundary dynamics of relaxation type,, J. Funct. Anal., 255 (2008), 3149.  doi: 10.1016/j.jfa.2008.07.012.  Google Scholar

[6]

J. Escher and G. Simonett, A center manifold analysis for the Mullins-Sekerka model,, J. Differential Equations, 143 (1998), 267.  doi: 10.1006/jdeq.1997.3373.  Google Scholar

[7]

J. Escher, J. Prüss and G. Simonett, Analytic solutions for a Stefan problem with Gibbs-Thomson correction,, J. Reine Angew. Math., 563 (2003), 1.  doi: 10.1515/crll.2003.082.  Google Scholar

[8]

R. Johnson, Y. Latushkin and R. Schnaubelt, Reduction principle and asymptotic phase for center manifolds of parabolic systems with nonlinear boundary conditions,, J. Dynam. Differential Equations, 26 (2014), 243.  doi: 10.1007/s10884-014-9360-7.  Google Scholar

[9]

Y. Latushkin, J. Prüss and R. Schnaubelt, Stable and unstable manifolds for quasilinear parabolic systems with fully nonlinear boundary conditions,, J. Evolution Equations, 6 (2006), 537.  doi: 10.1007/s00028-006-0272-9.  Google Scholar

[10]

Y. Latushkin, J. Prüss and R. Schnaubelt, Center manifolds and dynamics near equilibria of quasilinear parabolic systems with fully nonlinear boundary conditions,, Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 595.  doi: 10.3934/dcdsb.2008.9.595.  Google Scholar

[11]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems,, Birkhäuser, (1995).  doi: 10.1007/978-3-0348-9234-6.  Google Scholar

[12]

A. Mielke, Locally invariant manifolds for quasilinear parabolic equations,, Rocky Mountain J. Math., 21 (1991), 707.  doi: 10.1216/rmjm/1181072962.  Google Scholar

[13]

M. Meyries and R. Schnaubelt, Maximal regularity with temporal weights for parabolic problems with inhomogeneous boundary conditions,, Math. Nachr., 285 (2012), 1032.  doi: 10.1002/mana.201100057.  Google Scholar

[14]

K. Palmer, On the stability of the center manifold,, Z. Angew. Math. Phys., 38 (1987), 273.  doi: 10.1007/BF00945412.  Google Scholar

[15]

J. Püss and G. Simonett, Stability of equilibria for the Stefan problem with surface tension,, SIAM J. Math. Anal., 40 (2008), 675.  doi: 10.1137/070700632.  Google Scholar

[16]

J. Prüss, G. Simonett and R. Zacher, On convergence of solutions to equilibria for quasilinear parabolic problems,, J. Differential Equations, 246 (2009), 3902.  doi: 10.1016/j.jde.2008.10.034.  Google Scholar

[17]

J. Prüss, G. Simonett and R. Zacher, Qualitative behavior of solutions for thermodynamically consistent Stefan problems with surface tension,, Arch. Ration. Mech. Anal., 207 (2013), 611.  doi: 10.1007/s00205-012-0571-y.  Google Scholar

[18]

J. Prüss, M. Wilke and G. Simonett, Invariant foliations near normally hyperbolic equilibria for quasilinear parabolic problems,, Adv. Nonlinear Stud., 13 (2013), 231.   Google Scholar

[19]

M. Renardy, A centre manifold theorem for hyperbolic PDEs,, Proc. Roy. Soc. Edinburgh Sect. A, 122 (1992), 363.  doi: 10.1017/S0308210500021168.  Google Scholar

[20]

R. Schnaubelt, Stable and unstable manifolds for quasilinear parabolic problems with fully nonlinear dynamical boundary conditions,, submitted, ().   Google Scholar

[21]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations,, Springer-Verlag, (2002).  doi: 10.1007/978-1-4757-5037-9.  Google Scholar

[22]

G. Simonett, Invariant manifolds and bifurcation for quasilinear reaction-diffusion systems,, Nonlinear Anal., 23 (1994), 515.  doi: 10.1016/0362-546X(94)90092-2.  Google Scholar

[23]

G. Simonett, Center manifolds for quasilinear reaction-diffusion systems,, Differential Integral Equations, 8 (1995), 753.   Google Scholar

[24]

H. Triebel, Interpolation Theory,Function Spaces, Differential Operators,, J. A. Barth, (1995).   Google Scholar

[25]

A. Vanderbauwhede and S. A. van Gils, Center manifolds and contractions on a scale of Banach spaces,, J. Funct. Anal., 72 (1987), 209.  doi: 10.1016/0022-1236(87)90086-3.  Google Scholar

[26]

A. Vanderbauwhede and G. Iooss, Center manifolds in infinite dimensions,, in Dynamics Reported: Expositions in Dynamical Systems (New Series), 1 (1992), 125.   Google Scholar

[1]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[2]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[3]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[4]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[5]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[6]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[7]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[8]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[9]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[10]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[11]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[12]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[13]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[14]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[15]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[16]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[17]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[18]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[19]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020353

[20]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]