March  2015, 35(3): 1193-1230. doi: 10.3934/dcds.2015.35.1193

Center manifolds and attractivity for quasilinear parabolic problems with fully nonlinear dynamical boundary conditions

1. 

Department of Mathematics, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany

Received  February 2014 Revised  June 2014 Published  October 2014

We construct and investigate local invariant manifolds for a large class of quasilinear parabolic problems with fully nonlinear dynamical boundary conditions and study their attractivity properties. In a companion paper we have developed the corresponding solution theory. Examples for the class of systems considered are reaction--diffusion systems or phase field models with dynamical boundary conditions and to the two--phase Stefan problem with surface tension.
Citation: Roland Schnaubelt. Center manifolds and attractivity for quasilinear parabolic problems with fully nonlinear dynamical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1193-1230. doi: 10.3934/dcds.2015.35.1193
References:
[1]

H. Amann, Dynamic theory of quasilinear parabolic systems. III. Global existence,, Math. Z., 202 (1989), 219. doi: 10.1007/BF01215256. Google Scholar

[2]

H. Amann, Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems,, Differential Integral Equations, 3 (1990), 13. Google Scholar

[3]

P. Bates and C. Jones, Invariant manifolds for semilinear partial differential equations,, in Dynamics Reported. A Series in Dynamical Systems and their Applications, 2 (1989), 1. Google Scholar

[4]

R. Denk, M. Hieber and J. Prüss, Optimal $L_p$-$L_q$ estimates for parabolic boundary value problems with inhomogeneous data,, Math. Z., 257 (2007), 193. doi: 10.1007/s00209-007-0120-9. Google Scholar

[5]

R. Denk, J. Prüss and R. Zacher, Maximal $L_p$-regularity of parabolic problems with boundary dynamics of relaxation type,, J. Funct. Anal., 255 (2008), 3149. doi: 10.1016/j.jfa.2008.07.012. Google Scholar

[6]

J. Escher and G. Simonett, A center manifold analysis for the Mullins-Sekerka model,, J. Differential Equations, 143 (1998), 267. doi: 10.1006/jdeq.1997.3373. Google Scholar

[7]

J. Escher, J. Prüss and G. Simonett, Analytic solutions for a Stefan problem with Gibbs-Thomson correction,, J. Reine Angew. Math., 563 (2003), 1. doi: 10.1515/crll.2003.082. Google Scholar

[8]

R. Johnson, Y. Latushkin and R. Schnaubelt, Reduction principle and asymptotic phase for center manifolds of parabolic systems with nonlinear boundary conditions,, J. Dynam. Differential Equations, 26 (2014), 243. doi: 10.1007/s10884-014-9360-7. Google Scholar

[9]

Y. Latushkin, J. Prüss and R. Schnaubelt, Stable and unstable manifolds for quasilinear parabolic systems with fully nonlinear boundary conditions,, J. Evolution Equations, 6 (2006), 537. doi: 10.1007/s00028-006-0272-9. Google Scholar

[10]

Y. Latushkin, J. Prüss and R. Schnaubelt, Center manifolds and dynamics near equilibria of quasilinear parabolic systems with fully nonlinear boundary conditions,, Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 595. doi: 10.3934/dcdsb.2008.9.595. Google Scholar

[11]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems,, Birkhäuser, (1995). doi: 10.1007/978-3-0348-9234-6. Google Scholar

[12]

A. Mielke, Locally invariant manifolds for quasilinear parabolic equations,, Rocky Mountain J. Math., 21 (1991), 707. doi: 10.1216/rmjm/1181072962. Google Scholar

[13]

M. Meyries and R. Schnaubelt, Maximal regularity with temporal weights for parabolic problems with inhomogeneous boundary conditions,, Math. Nachr., 285 (2012), 1032. doi: 10.1002/mana.201100057. Google Scholar

[14]

K. Palmer, On the stability of the center manifold,, Z. Angew. Math. Phys., 38 (1987), 273. doi: 10.1007/BF00945412. Google Scholar

[15]

J. Püss and G. Simonett, Stability of equilibria for the Stefan problem with surface tension,, SIAM J. Math. Anal., 40 (2008), 675. doi: 10.1137/070700632. Google Scholar

[16]

J. Prüss, G. Simonett and R. Zacher, On convergence of solutions to equilibria for quasilinear parabolic problems,, J. Differential Equations, 246 (2009), 3902. doi: 10.1016/j.jde.2008.10.034. Google Scholar

[17]

J. Prüss, G. Simonett and R. Zacher, Qualitative behavior of solutions for thermodynamically consistent Stefan problems with surface tension,, Arch. Ration. Mech. Anal., 207 (2013), 611. doi: 10.1007/s00205-012-0571-y. Google Scholar

[18]

J. Prüss, M. Wilke and G. Simonett, Invariant foliations near normally hyperbolic equilibria for quasilinear parabolic problems,, Adv. Nonlinear Stud., 13 (2013), 231. Google Scholar

[19]

M. Renardy, A centre manifold theorem for hyperbolic PDEs,, Proc. Roy. Soc. Edinburgh Sect. A, 122 (1992), 363. doi: 10.1017/S0308210500021168. Google Scholar

[20]

R. Schnaubelt, Stable and unstable manifolds for quasilinear parabolic problems with fully nonlinear dynamical boundary conditions,, submitted, (). Google Scholar

[21]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations,, Springer-Verlag, (2002). doi: 10.1007/978-1-4757-5037-9. Google Scholar

[22]

G. Simonett, Invariant manifolds and bifurcation for quasilinear reaction-diffusion systems,, Nonlinear Anal., 23 (1994), 515. doi: 10.1016/0362-546X(94)90092-2. Google Scholar

[23]

G. Simonett, Center manifolds for quasilinear reaction-diffusion systems,, Differential Integral Equations, 8 (1995), 753. Google Scholar

[24]

H. Triebel, Interpolation Theory,Function Spaces, Differential Operators,, J. A. Barth, (1995). Google Scholar

[25]

A. Vanderbauwhede and S. A. van Gils, Center manifolds and contractions on a scale of Banach spaces,, J. Funct. Anal., 72 (1987), 209. doi: 10.1016/0022-1236(87)90086-3. Google Scholar

[26]

A. Vanderbauwhede and G. Iooss, Center manifolds in infinite dimensions,, in Dynamics Reported: Expositions in Dynamical Systems (New Series), 1 (1992), 125. Google Scholar

show all references

References:
[1]

H. Amann, Dynamic theory of quasilinear parabolic systems. III. Global existence,, Math. Z., 202 (1989), 219. doi: 10.1007/BF01215256. Google Scholar

[2]

H. Amann, Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems,, Differential Integral Equations, 3 (1990), 13. Google Scholar

[3]

P. Bates and C. Jones, Invariant manifolds for semilinear partial differential equations,, in Dynamics Reported. A Series in Dynamical Systems and their Applications, 2 (1989), 1. Google Scholar

[4]

R. Denk, M. Hieber and J. Prüss, Optimal $L_p$-$L_q$ estimates for parabolic boundary value problems with inhomogeneous data,, Math. Z., 257 (2007), 193. doi: 10.1007/s00209-007-0120-9. Google Scholar

[5]

R. Denk, J. Prüss and R. Zacher, Maximal $L_p$-regularity of parabolic problems with boundary dynamics of relaxation type,, J. Funct. Anal., 255 (2008), 3149. doi: 10.1016/j.jfa.2008.07.012. Google Scholar

[6]

J. Escher and G. Simonett, A center manifold analysis for the Mullins-Sekerka model,, J. Differential Equations, 143 (1998), 267. doi: 10.1006/jdeq.1997.3373. Google Scholar

[7]

J. Escher, J. Prüss and G. Simonett, Analytic solutions for a Stefan problem with Gibbs-Thomson correction,, J. Reine Angew. Math., 563 (2003), 1. doi: 10.1515/crll.2003.082. Google Scholar

[8]

R. Johnson, Y. Latushkin and R. Schnaubelt, Reduction principle and asymptotic phase for center manifolds of parabolic systems with nonlinear boundary conditions,, J. Dynam. Differential Equations, 26 (2014), 243. doi: 10.1007/s10884-014-9360-7. Google Scholar

[9]

Y. Latushkin, J. Prüss and R. Schnaubelt, Stable and unstable manifolds for quasilinear parabolic systems with fully nonlinear boundary conditions,, J. Evolution Equations, 6 (2006), 537. doi: 10.1007/s00028-006-0272-9. Google Scholar

[10]

Y. Latushkin, J. Prüss and R. Schnaubelt, Center manifolds and dynamics near equilibria of quasilinear parabolic systems with fully nonlinear boundary conditions,, Discrete Contin. Dyn. Syst. Ser. B, 9 (2008), 595. doi: 10.3934/dcdsb.2008.9.595. Google Scholar

[11]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems,, Birkhäuser, (1995). doi: 10.1007/978-3-0348-9234-6. Google Scholar

[12]

A. Mielke, Locally invariant manifolds for quasilinear parabolic equations,, Rocky Mountain J. Math., 21 (1991), 707. doi: 10.1216/rmjm/1181072962. Google Scholar

[13]

M. Meyries and R. Schnaubelt, Maximal regularity with temporal weights for parabolic problems with inhomogeneous boundary conditions,, Math. Nachr., 285 (2012), 1032. doi: 10.1002/mana.201100057. Google Scholar

[14]

K. Palmer, On the stability of the center manifold,, Z. Angew. Math. Phys., 38 (1987), 273. doi: 10.1007/BF00945412. Google Scholar

[15]

J. Püss and G. Simonett, Stability of equilibria for the Stefan problem with surface tension,, SIAM J. Math. Anal., 40 (2008), 675. doi: 10.1137/070700632. Google Scholar

[16]

J. Prüss, G. Simonett and R. Zacher, On convergence of solutions to equilibria for quasilinear parabolic problems,, J. Differential Equations, 246 (2009), 3902. doi: 10.1016/j.jde.2008.10.034. Google Scholar

[17]

J. Prüss, G. Simonett and R. Zacher, Qualitative behavior of solutions for thermodynamically consistent Stefan problems with surface tension,, Arch. Ration. Mech. Anal., 207 (2013), 611. doi: 10.1007/s00205-012-0571-y. Google Scholar

[18]

J. Prüss, M. Wilke and G. Simonett, Invariant foliations near normally hyperbolic equilibria for quasilinear parabolic problems,, Adv. Nonlinear Stud., 13 (2013), 231. Google Scholar

[19]

M. Renardy, A centre manifold theorem for hyperbolic PDEs,, Proc. Roy. Soc. Edinburgh Sect. A, 122 (1992), 363. doi: 10.1017/S0308210500021168. Google Scholar

[20]

R. Schnaubelt, Stable and unstable manifolds for quasilinear parabolic problems with fully nonlinear dynamical boundary conditions,, submitted, (). Google Scholar

[21]

G. R. Sell and Y. You, Dynamics of Evolutionary Equations,, Springer-Verlag, (2002). doi: 10.1007/978-1-4757-5037-9. Google Scholar

[22]

G. Simonett, Invariant manifolds and bifurcation for quasilinear reaction-diffusion systems,, Nonlinear Anal., 23 (1994), 515. doi: 10.1016/0362-546X(94)90092-2. Google Scholar

[23]

G. Simonett, Center manifolds for quasilinear reaction-diffusion systems,, Differential Integral Equations, 8 (1995), 753. Google Scholar

[24]

H. Triebel, Interpolation Theory,Function Spaces, Differential Operators,, J. A. Barth, (1995). Google Scholar

[25]

A. Vanderbauwhede and S. A. van Gils, Center manifolds and contractions on a scale of Banach spaces,, J. Funct. Anal., 72 (1987), 209. doi: 10.1016/0022-1236(87)90086-3. Google Scholar

[26]

A. Vanderbauwhede and G. Iooss, Center manifolds in infinite dimensions,, in Dynamics Reported: Expositions in Dynamical Systems (New Series), 1 (1992), 125. Google Scholar

[1]

Claudia Valls. The Boussinesq system:dynamics on the center manifold. Communications on Pure & Applied Analysis, 2005, 4 (4) : 839-860. doi: 10.3934/cpaa.2005.4.839

[2]

Sergey V. Bolotin, Piero Negrini. Global regularization for the $n$-center problem on a manifold. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 873-892. doi: 10.3934/dcds.2002.8.873

[3]

Camillo De Lellis, Emanuele Spadaro. Center manifold: A case study. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1249-1272. doi: 10.3934/dcds.2011.31.1249

[4]

Adina Luminiţa Sasu, Bogdan Sasu. Discrete admissibility and exponential trichotomy of dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2929-2962. doi: 10.3934/dcds.2014.34.2929

[5]

Alfonso C. Casal, Jesús Ildefonso Díaz, José M. Vegas. Finite extinction time property for a delayed linear problem on a manifold without boundary. Conference Publications, 2011, 2011 (Special) : 265-271. doi: 10.3934/proc.2011.2011.265

[6]

Stefano Bianchini, Alberto Bressan. A center manifold technique for tracing viscous waves. Communications on Pure & Applied Analysis, 2002, 1 (2) : 161-190. doi: 10.3934/cpaa.2002.1.161

[7]

Hayato Chiba, Georgi S. Medvedev. The mean field analysis of the kuramoto model on graphs Ⅱ. asymptotic stability of the incoherent state, center manifold reduction, and bifurcations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3897-3921. doi: 10.3934/dcds.2019157

[8]

George Osipenko. Linearization near a locally nonunique invariant manifold. Discrete & Continuous Dynamical Systems - A, 1997, 3 (2) : 189-205. doi: 10.3934/dcds.1997.3.189

[9]

Adina Luminiţa Sasu, Bogdan Sasu. Exponential trichotomy and $(r, p)$-admissibility for discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3199-3220. doi: 10.3934/dcdsb.2017170

[10]

A. Carati. Center manifold of unstable periodic orbits of helium atom: numerical evidence. Discrete & Continuous Dynamical Systems - B, 2003, 3 (1) : 97-104. doi: 10.3934/dcdsb.2003.3.97

[11]

Hichem Kasri, Amar Heminna. Exponential stability of a coupled system with Wentzell conditions. Evolution Equations & Control Theory, 2016, 5 (2) : 235-250. doi: 10.3934/eect.2016003

[12]

Igor Chueshov, Björn Schmalfuss. Qualitative behavior of a class of stochastic parabolic PDEs with dynamical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2007, 18 (2&3) : 315-338. doi: 10.3934/dcds.2007.18.315

[13]

Yuri Latushkin, Jan Prüss, Ronald Schnaubelt. Center manifolds and dynamics near equilibria of quasilinear parabolic systems with fully nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 595-633. doi: 10.3934/dcdsb.2008.9.595

[14]

Saikat Mazumdar. Struwe's decomposition for a polyharmonic operator on a compact Riemannian manifold with or without boundary. Communications on Pure & Applied Analysis, 2017, 16 (1) : 311-330. doi: 10.3934/cpaa.2017015

[15]

Shengbing Deng, Zied Khemiri, Fethi Mahmoudi. On spike solutions for a singularly perturbed problem in a compact riemannian manifold. Communications on Pure & Applied Analysis, 2018, 17 (5) : 2063-2084. doi: 10.3934/cpaa.2018098

[16]

Anna Maria Candela, J.L. Flores, M. Sánchez. A quadratic Bolza-type problem in a non-complete Riemannian manifold. Conference Publications, 2003, 2003 (Special) : 173-181. doi: 10.3934/proc.2003.2003.173

[17]

E. Camouzis, H. Kollias, I. Leventides. Stable manifold market sequences. Journal of Dynamics & Games, 2018, 5 (2) : 165-185. doi: 10.3934/jdg.2018010

[18]

Zhiguo Feng, Ka-Fai Cedric Yiu. Manifold relaxations for integer programming. Journal of Industrial & Management Optimization, 2014, 10 (2) : 557-566. doi: 10.3934/jimo.2014.10.557

[19]

Claude-Michel Brauner, Josephus Hulshof, Luca Lorenzi. Stability of the travelling wave in a 2D weakly nonlinear Stefan problem. Kinetic & Related Models, 2009, 2 (1) : 109-134. doi: 10.3934/krm.2009.2.109

[20]

Donatella Danielli, Marianne Korten. On the pointwise jump condition at the free boundary in the 1-phase Stefan problem. Communications on Pure & Applied Analysis, 2005, 4 (2) : 357-366. doi: 10.3934/cpaa.2005.4.357

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]