March  2015, 35(3): 1285-1326. doi: 10.3934/dcds.2015.35.1285

Equilibrium states and invariant measures for random dynamical systems

1. 

Udal'tsov Street 55, Apt. 17, Moscow, 119454, Russian Federation

Received  August 2013 Revised  July 2014 Published  October 2014

Random dynamical systems with countably many maps which admit countable Markov partitions on complete metric spaces such that the resulting Markov systems are uniformly continuous and contractive are considered. A non-degeneracy and a consistency conditions for such systems, which admit some proper Markov partitions of connected spaces, are introduced, and further sufficient conditions for them are provided. It is shown that every uniformly continuous Markov system associated with a continuous random dynamical system is consistent if it has a dominating Markov chain. A necessary and sufficient condition for the existence of an invariant Borel probability measure for such a non-degenerate system with a dominating Markov chain and a finite (16) is given. The condition is also sufficient if the non-degeneracy is weakened with the consistency condition. A further sufficient condition for the existence of an invariant measure for such a consistent system which involves only the properties of the dominating Markov chain is provided. In particular, it implies that every such a consistent system with a finite Markov partition and a finite (16) has an invariant Borel probability measure. A bijective map between these measures and equilibrium states associated with such a system is established in the non-degenerate case. Some properties of the map and the measures are given.
Citation: Ivan Werner. Equilibrium states and invariant measures for random dynamical systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1285-1326. doi: 10.3934/dcds.2015.35.1285
References:
[1]

A. Baraviera, C. F. Lardizabal, A. O. Lopes and M. Terra Cunha, A dynamical point of view of Quantum Information: Entropy, pressure and Wigner measures,, in Dynamics, 2 (2011), 161.  doi: 10.1007/978-3-642-14788-3_13.  Google Scholar

[2]

M. F. Barnsley, S. G. Demko, J. H. Elton and J. S. Geronimo, Invariant measure for Markov processes arising from iterated function systems with place-dependent probabilities,, Ann. Inst. Henri Poincaré, 24 (1988), 367.   Google Scholar

[3]

M. F. Barnsley, S. G. Demko, J. H. Elton and J. S. Geronimo, Erratum: Invariant measure for Markov processes arising from iterated function systems with place-dependent probabilities,, Ann. Inst. Henri Poincaré, 25 (1989), 589.   Google Scholar

[4]

V. I. Bogachev, Measure Theory. Vol. I,II., Springer, (2007).  doi: 10.1007/978-3-540-34514-5.  Google Scholar

[5]

M. Denker and M. Urbański, On the existence of conformal measures,, Trans. Am. Math. Soc., 328 (1991), 563.  doi: 10.1090/S0002-9947-1991-1014246-4.  Google Scholar

[6]

H. Föllmer, U. Horst and A. Kirman, Equilibria in financial markets with heterogeneous agents: A probabilistic perspective,, Journal of Mathematical Economics, 41 (2005), 123.  doi: 10.1016/j.jmateco.2004.08.001.  Google Scholar

[7]

K. Horbacz and T. Szarek, Irreducible Markov systems on Polish spaces,, Studia Math., 177 (2006), 285.  doi: 10.4064/sm177-3-7.  Google Scholar

[8]

R. Isaac, Markov processes and unique stationary probability measures,, Pacific J. Math., 12 (1962), 273.  doi: 10.2140/pjm.1962.12.273.  Google Scholar

[9]

A. Johansson, A. Öberg and M. Pollicott, Countable state shifts and uniqueness of g-measures,, Amer. J. Math., 129 (2007), 1501.  doi: 10.1353/ajm.2007.0044.  Google Scholar

[10]

M. Keane, Strongly Mixing $g$-Measures,, Inventiones math., 16 (1972), 309.  doi: 10.1007/BF01425715.  Google Scholar

[11]

F. Ledrappier, Principe variationnel et systèmes dynamiques symboliques,, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 30 (1974), 185.  doi: 10.1007/BF00533471.  Google Scholar

[12]

O. Sarig, Thermodynamic formalism for countable Markov shifts,, Ergod. Th. & Dynam. Sys., 19 (1999), 1565.  doi: 10.1017/S0143385799146820.  Google Scholar

[13]

O. Sarig, Thermodynamic formalism for null recurrent potentials,, Israel Journal of Mathematics, 121 (2001), 285.  doi: 10.1007/BF02802508.  Google Scholar

[14]

W. Slomczynski, Dynamical Entropy, Markov Operators, and Iterated Function Systems,, Rozprawy Habilitacyjne Uniwersytetu Jagiellońskiego Nr 362, (2003).   Google Scholar

[15]

T. Szarek, Invariant measures for nonexpansive Markov operators on Polish spaces,, Diss. Math., 415 (2003), 1.  doi: 10.4064/dm415-0-1.  Google Scholar

[16]

P. Walters, Ruelle's Operator Theorem and $g$-measures,, Tran. AMS, 214 (1975), 375.  doi: 10.1090/S0002-9947-1975-0412389-8.  Google Scholar

[17]

I. Werner, Contractive Markov systems,, J. London Math. Soc., 71 (2005), 236.  doi: 10.1112/S0024610704006088.  Google Scholar

[18]

I. Werner, Coding map for a contractive Markov system,, Math. Proc. Camb. Phil. Soc., 140 (2006), 333.  doi: 10.1017/S0305004105009072.  Google Scholar

[19]

I. Werner, The generalized Markov measure as an equilibrium state,, Nonlinearity 18 (2005), 18 (2005), 2261.  doi: 10.1088/0951-7715/18/5/019.  Google Scholar

[20]

I. Werner, Dynamically defined measures and equilibrium states,, J. Math. Phys. 52 (2011), 52 (2011).  doi: 10.1063/1.3666020.  Google Scholar

[21]

I. Werner, Erratum: Dynamically defined measures and equilibrium states,, J. Math. Phys. 53 (2012), 53 (2012).  doi: 10.1063/1.4736999.  Google Scholar

[22]

I. Werner, Contractive Markov systems II,, , ().   Google Scholar

[23]

I. Werner, Fundamental Markov systems,, , ().   Google Scholar

show all references

References:
[1]

A. Baraviera, C. F. Lardizabal, A. O. Lopes and M. Terra Cunha, A dynamical point of view of Quantum Information: Entropy, pressure and Wigner measures,, in Dynamics, 2 (2011), 161.  doi: 10.1007/978-3-642-14788-3_13.  Google Scholar

[2]

M. F. Barnsley, S. G. Demko, J. H. Elton and J. S. Geronimo, Invariant measure for Markov processes arising from iterated function systems with place-dependent probabilities,, Ann. Inst. Henri Poincaré, 24 (1988), 367.   Google Scholar

[3]

M. F. Barnsley, S. G. Demko, J. H. Elton and J. S. Geronimo, Erratum: Invariant measure for Markov processes arising from iterated function systems with place-dependent probabilities,, Ann. Inst. Henri Poincaré, 25 (1989), 589.   Google Scholar

[4]

V. I. Bogachev, Measure Theory. Vol. I,II., Springer, (2007).  doi: 10.1007/978-3-540-34514-5.  Google Scholar

[5]

M. Denker and M. Urbański, On the existence of conformal measures,, Trans. Am. Math. Soc., 328 (1991), 563.  doi: 10.1090/S0002-9947-1991-1014246-4.  Google Scholar

[6]

H. Föllmer, U. Horst and A. Kirman, Equilibria in financial markets with heterogeneous agents: A probabilistic perspective,, Journal of Mathematical Economics, 41 (2005), 123.  doi: 10.1016/j.jmateco.2004.08.001.  Google Scholar

[7]

K. Horbacz and T. Szarek, Irreducible Markov systems on Polish spaces,, Studia Math., 177 (2006), 285.  doi: 10.4064/sm177-3-7.  Google Scholar

[8]

R. Isaac, Markov processes and unique stationary probability measures,, Pacific J. Math., 12 (1962), 273.  doi: 10.2140/pjm.1962.12.273.  Google Scholar

[9]

A. Johansson, A. Öberg and M. Pollicott, Countable state shifts and uniqueness of g-measures,, Amer. J. Math., 129 (2007), 1501.  doi: 10.1353/ajm.2007.0044.  Google Scholar

[10]

M. Keane, Strongly Mixing $g$-Measures,, Inventiones math., 16 (1972), 309.  doi: 10.1007/BF01425715.  Google Scholar

[11]

F. Ledrappier, Principe variationnel et systèmes dynamiques symboliques,, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 30 (1974), 185.  doi: 10.1007/BF00533471.  Google Scholar

[12]

O. Sarig, Thermodynamic formalism for countable Markov shifts,, Ergod. Th. & Dynam. Sys., 19 (1999), 1565.  doi: 10.1017/S0143385799146820.  Google Scholar

[13]

O. Sarig, Thermodynamic formalism for null recurrent potentials,, Israel Journal of Mathematics, 121 (2001), 285.  doi: 10.1007/BF02802508.  Google Scholar

[14]

W. Slomczynski, Dynamical Entropy, Markov Operators, and Iterated Function Systems,, Rozprawy Habilitacyjne Uniwersytetu Jagiellońskiego Nr 362, (2003).   Google Scholar

[15]

T. Szarek, Invariant measures for nonexpansive Markov operators on Polish spaces,, Diss. Math., 415 (2003), 1.  doi: 10.4064/dm415-0-1.  Google Scholar

[16]

P. Walters, Ruelle's Operator Theorem and $g$-measures,, Tran. AMS, 214 (1975), 375.  doi: 10.1090/S0002-9947-1975-0412389-8.  Google Scholar

[17]

I. Werner, Contractive Markov systems,, J. London Math. Soc., 71 (2005), 236.  doi: 10.1112/S0024610704006088.  Google Scholar

[18]

I. Werner, Coding map for a contractive Markov system,, Math. Proc. Camb. Phil. Soc., 140 (2006), 333.  doi: 10.1017/S0305004105009072.  Google Scholar

[19]

I. Werner, The generalized Markov measure as an equilibrium state,, Nonlinearity 18 (2005), 18 (2005), 2261.  doi: 10.1088/0951-7715/18/5/019.  Google Scholar

[20]

I. Werner, Dynamically defined measures and equilibrium states,, J. Math. Phys. 52 (2011), 52 (2011).  doi: 10.1063/1.3666020.  Google Scholar

[21]

I. Werner, Erratum: Dynamically defined measures and equilibrium states,, J. Math. Phys. 53 (2012), 53 (2012).  doi: 10.1063/1.4736999.  Google Scholar

[22]

I. Werner, Contractive Markov systems II,, , ().   Google Scholar

[23]

I. Werner, Fundamental Markov systems,, , ().   Google Scholar

[1]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[2]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[3]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[4]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[5]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[6]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[7]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[8]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[9]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[10]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[11]

Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001

[12]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[13]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[14]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[15]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[16]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[17]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[18]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[19]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

[20]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]