Advanced Search
Article Contents
Article Contents

Existence of weak solutions to the three-dimensional density-dependent generalized incompressible magnetohydrodynamic flows

Abstract Related Papers Cited by
  • In this paper we consider the equations of the unsteady viscous, incompressible, and heat conducting magnetohydrodynamic flows in a bounded three-dimensional domain with Lipschitz boundary. By an approximation scheme and a weak convergence method, the existence of a weak solution to the three-dimensional density dependent generalized incompressible magnetohydrodynamic equations with large data is obtained.
    Mathematics Subject Classification: Primary: 76W05, 35D30.


    \begin{equation} \\ \end{equation}
  • [1]

    W. Andra and H. Nowak, Magnetism in Medicine, Wiley VCH, Berlin, 2007.doi: 10.1002/9783527610174.


    M. F. Barnothy (Ed.), Biological Effects of Magnetic Fields, Plenum Press, New York, 1964.


    R. Bhargava, H. S. Sugandha and O. A. Takhar, Computational simulation of biomagnetic micropolar blood flow in porous media, J. Biomech., 39 (2006), S648-S649.doi: 10.1016/S0021-9290(06)85704-0.


    R. M. Brown and Z. Shen, Estimates for the Stokes problem operator in Lipschitz domains, Indiana Univ. Math. J., 44 (1995), 1183-1206.doi: 10.1512/iumj.1995.44.2025.


    M. Bulíček, E. Feireisl and J. Málek, Navier-Stokes-Fourier system for incompressible fluids with temperature dependent material coefficients, Nonlinear Anal. Real World Appl., 10 (2009), 992-1015.doi: 10.1016/j.nonrwa.2007.11.018.


    M. Bulíček, J. Málek and K. R. Rajagopal, Navier's slip and evolutionary Navier-Stokes like systems with pressure and shear-rate dependent viscosity, Indiana Univ. Math. J., 56 (2007), 51-85.doi: 10.1512/iumj.2007.56.2997.


    M. Bulíček, J. Málek and K. R. Rajagopal, Mathematical analysis of unsteady flows of fluids with pressure, shear-rate and temperature dependent material moduli, that slip at solid boundaries, SIAM J. Math. Anal., 41 (2009), 665-707.doi: 10.1137/07069540X.


    H. Cabannes, Theoretical Magnetofluiddynamics, New York: Academic Press, 1970.


    L. Diening, M. Ružička and J. Wolf, Existence of weak solutions for unsteady motions of generalized Newtonian fluids, Annali della Scuola Normale Superiore di Pisa IX., 9 (2010), 1-46.


    R. J. DiPerna and P. L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989), 511-547.doi: 10.1007/BF01393835.


    B. Ducomet and E. Feireisl, The equations of Magnetohydrodynamics: On the interaction between matter and radiation in the evolution of gaseous stars, Commun. Math. Phys., 226 (2006), 595-629.doi: 10.1007/s00220-006-0052-y.


    G. Duvaut and J. L. Lions, Inéquation en thermoélasticité et magnéto-hydrodynamique, Arch. Rational Mech. Anal., 46 (1972), 241-279.


    E. F. El-Shehawey, E. M. E. Elbarbary, N. A. S. Afifi and M. Elshahed, MHD flow of an elastico-viscous fluid under periodic body acceleration, Int. J. Math. Math. Sci., 23 (2000), 795-799.doi: 10.1155/S0161171200002817.


    E. Feireisl, Dynamics of Viscous Compressible Fluids, Oxford Lecture Series in Mathematics and its Applications, 26. Oxford: Oxford University Press, 2004.


    E. Fernández-Cara, F. Guillén and R. R. Ortega, Some theoretical results for viscoplastic and dilatant fluids with variable desity, Nonlinear Anal., 28 (1997), 1079-1100.doi: 10.1016/S0362-546X(97)82861-1.


    J. Frehse and M. Ružička, Non-homogeneous generalized newtonian fluids, Math. Z., 260 (2008), 355-375.doi: 10.1007/s00209-007-0278-1.


    J. Frehse, J. Málek and M. Ružička, Large data existence result for unsteady flows of inhomogeneous shear thickening heat conducting incompressible fluids, Comm. PDE., 35 (2010), 1891-1919.doi: 10.1080/03605300903380746.


    G. P. Galdi, C. G. Simader and H. Sohr, On the Stokes problem in Lipschitz domains, Ann. Mat. Pura Appl., 167 (1994), 147-163.doi: 10.1007/BF01760332.


    F. Guillén-González, Density dependent incompressible fluids with non-Newtonian viscosity, Czechoslovak Math. J., 54 (2004), 637-656.doi: 10.1007/s10587-004-6414-8.


    X. Hu and D. Wang, Global solutions to the three dimensional full compressible magnetohydrodynamic flows, Comm. Math. Phys., 283 (2008), 255-284.doi: 10.1007/s00220-008-0497-2.


    X. Hu and D. Wang, Compactness of weak solutions to the three-dimensional compressible magnetohydrodynamic equations, J. Differential Equations., 245 (2008), 2176-2198.doi: 10.1016/j.jde.2008.07.019.


    X. Hu and D. Wang, Global existence and large time behavior of solutions to the three dimensional equations of compressible magnetohydrodynamic flows, Arch. Rational Mech. Anal., 197 (2010), 203-238.doi: 10.1007/s00205-010-0295-9.


    X. Hu and D. Wang, Low mach number limit of viscous compressible magnetohydrodynamic flows, SIAM J. Math. Anal., 41 (2009), 1272-1294.doi: 10.1137/080723983.


    S. Jiang, Q. C. Ju and F. C. Li, Incompressible limit of the compressible Magnetohydrodynamic equations with periodic boundary conditions, Comm. Math. Phys., 297 (2010), 371-400.doi: 10.1007/s00220-010-0992-0.


    S. Jiang, Q. C. Ju and F. C. Li, Incompressible limit of the compressible Magnetohydrodynamic equations with vanishing viscosity coefficients, SIAM J. Math. Anal., 42 (2010), 2539-2553.doi: 10.1137/100785168.


    A. R. Kantrovits and G. Y. Petchek, Magnitnaya Gidrodinamika (Magnetohydrodynamics), Atomizdat, Moscow, 1958.


    S. Kawashima and V. V. Shelukhin, Unique global solution with respect to time of initial boundary value problems for one dimensional equations of a viscous gas, J. Appl. Math. Mech., 41 (1977), 273-282.


    A. G. Kulikovskiy and G. A. Lyubimov, Magnetohydrodynamics, Reading, MA: Addison-Wesley, 1965.


    L. D. Laudau and E. M. Lifshitz, Electrodynamics of Continuous Media, 2nd ed., New York: Pergamon, 1984.


    P. L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 1. Incompressible models. Oxford Lecture Series in Mathematics and its Applications, Vol.3. New York: Oxford University Press, 1996.


    P. L. Lions, Mathematical Topics in Fluid Mechanics, Vol. 2. Compressible models. Oxford Lecture Series in Mathematics and its Applications, 10. Oxford Science Publications. New York: The Clarendon Press, Oxford University Press, 1998.


    A. Novotný, I. Straškraba, Introduction to the Theory of Compressible Flow, Oxford: Oxford University Press, 2004.


    K. Ohkitani and P. Constantin, Two and three dimensional magnetic reconnection observed in the Eulerian Lagrangian analysis of magnetohydrodynamics equations, Phys. Rev. E., 78 (2008), 066315, 11 pp.doi: 10.1103/PhysRevE.78.066315.


    T. Sarpkaya, Flow of non-Newtonian fluids in a magnetic field, AIChE. J., 7 (1961), 324-328.doi: 10.1002/aic.690070231.


    M. Sermange and R. Temam, Some mathematical questions related to the MHD equations, Comm. Pure Appl. Math., 36 (1983), 635-664.doi: 10.1002/cpa.3160360506.


    J. Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.doi: 10.1007/BF01762360.


    J. Wolf, Existence of weak solutions to the equations of non-stationary motion of non-Newtonian fluids with shear rate dependent viscosity, J. Math. Fluid Mech., 9 (2007), 104-138.doi: 10.1007/s00021-006-0219-5.


    W. P. Yan, Motion of compressible magnetic fluids in $T^3$. Electron, J. Differential Equations., 232 (2013), 29 pp.


    W. P. Yan, On weak-strong uniqueness property for full compressible magnetohydrodynamics flows, Cent. Eur. J. Math., 11 (2013), 2005-2019.doi: 10.2478/s11533-013-0297-6.

  • 加载中

Article Metrics

HTML views() PDF downloads(108) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint