• Previous Article
    Finite mass solutions for a nonlocal inhomogeneous dispersal equation
  • DCDS Home
  • This Issue
  • Next Article
    Preface: Special issue on dissipative systems and applications with emphasis on nonlocal or nonlinear diffusion problems
April  2015, 35(4): 1391-1407. doi: 10.3934/dcds.2015.35.1391

Asymptotic behavior for a nonlocal diffusion equation on the half line

1. 

Departamento de Matemáticas, Pontificia Universidad Católica de Chile, Santiago, Chile, Chile

2. 

Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049-Madrid, Spain, Spain

Received  June 2013 Revised  March 2014 Published  November 2014

We study the large time behavior of solutions to a nonlocal diffusion equation, $u_t=J*u-u$ with $J$ smooth, radially symmetric and compactly supported, posed in $\mathbb{R}_+$ with zero Dirichlet boundary conditions. In the far-field scale, $\xi_1\le xt^{-1/2}\le \xi_2$ with $\xi_1,\xi_2>0$, the asymptotic behavior is given by a multiple of the dipole solution for the local heat equation, hence $tu(x,t)$ is bounded above and below by positive constants in this region for large times. The proportionality constant is determined from a conservation law, related to the asymptotic first momentum. In compact sets, after scaling the solution by a factor $t^{3/2}$, it converges to a multiple of the unique stationary solution of the problem that behaves as $x$ at infinity. The precise proportionality factor is obtained through a matching procedure with the far-field limit. Finally, in the very far-field, $x\ge t^{1/2} g(t)$ with $g(t)\to\infty$, the solution is proved to be of order $o(t^{-1})$.
Citation: Carmen Cortázar, Manuel Elgueta, Fernando Quirós, Noemí Wolanski. Asymptotic behavior for a nonlocal diffusion equation on the half line. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1391-1407. doi: 10.3934/dcds.2015.35.1391
References:
[1]

P. W. Bates and A. Chmaj, An integrodifferential model for phase transitions: Stationary solutions in higher dimensions,, J. Statist. Phys., 95 (1999), 1119.  doi: 10.1023/A:1004514803625.  Google Scholar

[2]

P. W. Bates and A. Chmaj, A discrete convolution model for phase transitions,, Arch. Ration. Mech. Anal., 150 (1999), 281.  doi: 10.1007/s002050050189.  Google Scholar

[3]

P. W. Bates and G. Zhao, Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal,, J. Math. Anal. Appl., 332 (2007), 428.  doi: 10.1016/j.jmaa.2006.09.007.  Google Scholar

[4]

C. Brändle, E. Chasseigne and R. Ferreira, Unbounded solutions of the nonlocal heat equation,, Commun. Pure Appl. Anal., 10 (2011), 1663.  doi: 10.3934/cpaa.2011.10.1663.  Google Scholar

[5]

C. Carrillo and P. Fife, Spatial effects in discrete generation population models,, J. Math. Biol., 50 (2005), 161.  doi: 10.1007/s00285-004-0284-4.  Google Scholar

[6]

E. Chasseigne, M. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equations,, J. Math. Pures Appl. (9), 86 (2006), 271.  doi: 10.1016/j.matpur.2006.04.005.  Google Scholar

[7]

C. Cortázar, M. Elgueta, F. Quirós and N. Wolanski, Asymptotic behavior for a nonlocal diffusion equation in domains with holes,, Arch. Ration. Mech. Anal., 205 (2012), 673.  doi: 10.1007/s00205-012-0519-2.  Google Scholar

[8]

C. Cortázar, M. Elgueta, J. D. Rossi and N. Wolanski, How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems,, Arch. Ration. Mech. Anal., 187 (2008), 137.  doi: 10.1007/s00205-007-0062-8.  Google Scholar

[9]

J. Duoandikoetxea and E. Zuazua, Moments, masses de Dirac et decomposition de fonctions,, (French) [Moments, 315 (1992), 693.   Google Scholar

[10]

P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions,, in Trends in nonlinear analysis, (2003), 153.   Google Scholar

[11]

G. Gilboa and S. Osher, Nonlocal operators with application to image processing,, Multiscale Model. Simul., 7 (2008), 1005.  doi: 10.1137/070698592.  Google Scholar

[12]

L. A. Herraiz, A nonlinear parabolic problem in an exterior domain,, J. Differential Equations, 142 (1998), 371.  doi: 10.1006/jdeq.1997.3358.  Google Scholar

[13]

L. I. Ignat and J. D. Rossi, Refined asymptotic expansions for nonlocal diffusion equations,, J. Evol. Equ., 8 (2008), 617.  doi: 10.1007/s00028-008-0372-9.  Google Scholar

[14]

A. Wintner, On a class of fourier transforms,, Amer. J. Math., 58 (1936), 45.  doi: 10.2307/2371058.  Google Scholar

show all references

References:
[1]

P. W. Bates and A. Chmaj, An integrodifferential model for phase transitions: Stationary solutions in higher dimensions,, J. Statist. Phys., 95 (1999), 1119.  doi: 10.1023/A:1004514803625.  Google Scholar

[2]

P. W. Bates and A. Chmaj, A discrete convolution model for phase transitions,, Arch. Ration. Mech. Anal., 150 (1999), 281.  doi: 10.1007/s002050050189.  Google Scholar

[3]

P. W. Bates and G. Zhao, Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal,, J. Math. Anal. Appl., 332 (2007), 428.  doi: 10.1016/j.jmaa.2006.09.007.  Google Scholar

[4]

C. Brändle, E. Chasseigne and R. Ferreira, Unbounded solutions of the nonlocal heat equation,, Commun. Pure Appl. Anal., 10 (2011), 1663.  doi: 10.3934/cpaa.2011.10.1663.  Google Scholar

[5]

C. Carrillo and P. Fife, Spatial effects in discrete generation population models,, J. Math. Biol., 50 (2005), 161.  doi: 10.1007/s00285-004-0284-4.  Google Scholar

[6]

E. Chasseigne, M. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equations,, J. Math. Pures Appl. (9), 86 (2006), 271.  doi: 10.1016/j.matpur.2006.04.005.  Google Scholar

[7]

C. Cortázar, M. Elgueta, F. Quirós and N. Wolanski, Asymptotic behavior for a nonlocal diffusion equation in domains with holes,, Arch. Ration. Mech. Anal., 205 (2012), 673.  doi: 10.1007/s00205-012-0519-2.  Google Scholar

[8]

C. Cortázar, M. Elgueta, J. D. Rossi and N. Wolanski, How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems,, Arch. Ration. Mech. Anal., 187 (2008), 137.  doi: 10.1007/s00205-007-0062-8.  Google Scholar

[9]

J. Duoandikoetxea and E. Zuazua, Moments, masses de Dirac et decomposition de fonctions,, (French) [Moments, 315 (1992), 693.   Google Scholar

[10]

P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions,, in Trends in nonlinear analysis, (2003), 153.   Google Scholar

[11]

G. Gilboa and S. Osher, Nonlocal operators with application to image processing,, Multiscale Model. Simul., 7 (2008), 1005.  doi: 10.1137/070698592.  Google Scholar

[12]

L. A. Herraiz, A nonlinear parabolic problem in an exterior domain,, J. Differential Equations, 142 (1998), 371.  doi: 10.1006/jdeq.1997.3358.  Google Scholar

[13]

L. I. Ignat and J. D. Rossi, Refined asymptotic expansions for nonlocal diffusion equations,, J. Evol. Equ., 8 (2008), 617.  doi: 10.1007/s00028-008-0372-9.  Google Scholar

[14]

A. Wintner, On a class of fourier transforms,, Amer. J. Math., 58 (1936), 45.  doi: 10.2307/2371058.  Google Scholar

[1]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[2]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[3]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[4]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[5]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[6]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[7]

Luca Battaglia, Francesca Gladiali, Massimo Grossi. Asymptotic behavior of minimal solutions of $ -\Delta u = \lambda f(u) $ as $ \lambda\to-\infty $. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 681-700. doi: 10.3934/dcds.2020293

[8]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[9]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[10]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[11]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[12]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[13]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[14]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[15]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[16]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[17]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[18]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[19]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[20]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (5)

[Back to Top]