• Previous Article
    Finite mass solutions for a nonlocal inhomogeneous dispersal equation
  • DCDS Home
  • This Issue
  • Next Article
    Preface: Special issue on dissipative systems and applications with emphasis on nonlocal or nonlinear diffusion problems
April  2015, 35(4): 1391-1407. doi: 10.3934/dcds.2015.35.1391

Asymptotic behavior for a nonlocal diffusion equation on the half line

1. 

Departamento de Matemáticas, Pontificia Universidad Católica de Chile, Santiago, Chile, Chile

2. 

Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049-Madrid, Spain, Spain

Received  June 2013 Revised  March 2014 Published  November 2014

We study the large time behavior of solutions to a nonlocal diffusion equation, $u_t=J*u-u$ with $J$ smooth, radially symmetric and compactly supported, posed in $\mathbb{R}_+$ with zero Dirichlet boundary conditions. In the far-field scale, $\xi_1\le xt^{-1/2}\le \xi_2$ with $\xi_1,\xi_2>0$, the asymptotic behavior is given by a multiple of the dipole solution for the local heat equation, hence $tu(x,t)$ is bounded above and below by positive constants in this region for large times. The proportionality constant is determined from a conservation law, related to the asymptotic first momentum. In compact sets, after scaling the solution by a factor $t^{3/2}$, it converges to a multiple of the unique stationary solution of the problem that behaves as $x$ at infinity. The precise proportionality factor is obtained through a matching procedure with the far-field limit. Finally, in the very far-field, $x\ge t^{1/2} g(t)$ with $g(t)\to\infty$, the solution is proved to be of order $o(t^{-1})$.
Citation: Carmen Cortázar, Manuel Elgueta, Fernando Quirós, Noemí Wolanski. Asymptotic behavior for a nonlocal diffusion equation on the half line. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1391-1407. doi: 10.3934/dcds.2015.35.1391
References:
[1]

P. W. Bates and A. Chmaj, An integrodifferential model for phase transitions: Stationary solutions in higher dimensions,, J. Statist. Phys., 95 (1999), 1119.  doi: 10.1023/A:1004514803625.  Google Scholar

[2]

P. W. Bates and A. Chmaj, A discrete convolution model for phase transitions,, Arch. Ration. Mech. Anal., 150 (1999), 281.  doi: 10.1007/s002050050189.  Google Scholar

[3]

P. W. Bates and G. Zhao, Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal,, J. Math. Anal. Appl., 332 (2007), 428.  doi: 10.1016/j.jmaa.2006.09.007.  Google Scholar

[4]

C. Brändle, E. Chasseigne and R. Ferreira, Unbounded solutions of the nonlocal heat equation,, Commun. Pure Appl. Anal., 10 (2011), 1663.  doi: 10.3934/cpaa.2011.10.1663.  Google Scholar

[5]

C. Carrillo and P. Fife, Spatial effects in discrete generation population models,, J. Math. Biol., 50 (2005), 161.  doi: 10.1007/s00285-004-0284-4.  Google Scholar

[6]

E. Chasseigne, M. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equations,, J. Math. Pures Appl. (9), 86 (2006), 271.  doi: 10.1016/j.matpur.2006.04.005.  Google Scholar

[7]

C. Cortázar, M. Elgueta, F. Quirós and N. Wolanski, Asymptotic behavior for a nonlocal diffusion equation in domains with holes,, Arch. Ration. Mech. Anal., 205 (2012), 673.  doi: 10.1007/s00205-012-0519-2.  Google Scholar

[8]

C. Cortázar, M. Elgueta, J. D. Rossi and N. Wolanski, How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems,, Arch. Ration. Mech. Anal., 187 (2008), 137.  doi: 10.1007/s00205-007-0062-8.  Google Scholar

[9]

J. Duoandikoetxea and E. Zuazua, Moments, masses de Dirac et decomposition de fonctions,, (French) [Moments, 315 (1992), 693.   Google Scholar

[10]

P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions,, in Trends in nonlinear analysis, (2003), 153.   Google Scholar

[11]

G. Gilboa and S. Osher, Nonlocal operators with application to image processing,, Multiscale Model. Simul., 7 (2008), 1005.  doi: 10.1137/070698592.  Google Scholar

[12]

L. A. Herraiz, A nonlinear parabolic problem in an exterior domain,, J. Differential Equations, 142 (1998), 371.  doi: 10.1006/jdeq.1997.3358.  Google Scholar

[13]

L. I. Ignat and J. D. Rossi, Refined asymptotic expansions for nonlocal diffusion equations,, J. Evol. Equ., 8 (2008), 617.  doi: 10.1007/s00028-008-0372-9.  Google Scholar

[14]

A. Wintner, On a class of fourier transforms,, Amer. J. Math., 58 (1936), 45.  doi: 10.2307/2371058.  Google Scholar

show all references

References:
[1]

P. W. Bates and A. Chmaj, An integrodifferential model for phase transitions: Stationary solutions in higher dimensions,, J. Statist. Phys., 95 (1999), 1119.  doi: 10.1023/A:1004514803625.  Google Scholar

[2]

P. W. Bates and A. Chmaj, A discrete convolution model for phase transitions,, Arch. Ration. Mech. Anal., 150 (1999), 281.  doi: 10.1007/s002050050189.  Google Scholar

[3]

P. W. Bates and G. Zhao, Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal,, J. Math. Anal. Appl., 332 (2007), 428.  doi: 10.1016/j.jmaa.2006.09.007.  Google Scholar

[4]

C. Brändle, E. Chasseigne and R. Ferreira, Unbounded solutions of the nonlocal heat equation,, Commun. Pure Appl. Anal., 10 (2011), 1663.  doi: 10.3934/cpaa.2011.10.1663.  Google Scholar

[5]

C. Carrillo and P. Fife, Spatial effects in discrete generation population models,, J. Math. Biol., 50 (2005), 161.  doi: 10.1007/s00285-004-0284-4.  Google Scholar

[6]

E. Chasseigne, M. Chaves and J. D. Rossi, Asymptotic behavior for nonlocal diffusion equations,, J. Math. Pures Appl. (9), 86 (2006), 271.  doi: 10.1016/j.matpur.2006.04.005.  Google Scholar

[7]

C. Cortázar, M. Elgueta, F. Quirós and N. Wolanski, Asymptotic behavior for a nonlocal diffusion equation in domains with holes,, Arch. Ration. Mech. Anal., 205 (2012), 673.  doi: 10.1007/s00205-012-0519-2.  Google Scholar

[8]

C. Cortázar, M. Elgueta, J. D. Rossi and N. Wolanski, How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems,, Arch. Ration. Mech. Anal., 187 (2008), 137.  doi: 10.1007/s00205-007-0062-8.  Google Scholar

[9]

J. Duoandikoetxea and E. Zuazua, Moments, masses de Dirac et decomposition de fonctions,, (French) [Moments, 315 (1992), 693.   Google Scholar

[10]

P. Fife, Some nonclassical trends in parabolic and parabolic-like evolutions,, in Trends in nonlinear analysis, (2003), 153.   Google Scholar

[11]

G. Gilboa and S. Osher, Nonlocal operators with application to image processing,, Multiscale Model. Simul., 7 (2008), 1005.  doi: 10.1137/070698592.  Google Scholar

[12]

L. A. Herraiz, A nonlinear parabolic problem in an exterior domain,, J. Differential Equations, 142 (1998), 371.  doi: 10.1006/jdeq.1997.3358.  Google Scholar

[13]

L. I. Ignat and J. D. Rossi, Refined asymptotic expansions for nonlocal diffusion equations,, J. Evol. Equ., 8 (2008), 617.  doi: 10.1007/s00028-008-0372-9.  Google Scholar

[14]

A. Wintner, On a class of fourier transforms,, Amer. J. Math., 58 (1936), 45.  doi: 10.2307/2371058.  Google Scholar

[1]

Bhargav Kumar Kakumani, Suman Kumar Tumuluri. Asymptotic behavior of the solution of a diffusion equation with nonlocal boundary conditions. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 407-419. doi: 10.3934/dcdsb.2017019

[2]

Yan Zhang. Asymptotic behavior of a nonlocal KPP equation with an almost periodic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5183-5199. doi: 10.3934/dcds.2016025

[3]

Cecilia Cavaterra, Maurizio Grasselli. Asymptotic behavior of population dynamics models with nonlocal distributed delays. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 861-883. doi: 10.3934/dcds.2008.22.861

[4]

Martin Burger, Marco Di Francesco. Large time behavior of nonlocal aggregation models with nonlinear diffusion. Networks & Heterogeneous Media, 2008, 3 (4) : 749-785. doi: 10.3934/nhm.2008.3.749

[5]

Joana Terra, Noemi Wolanski. Large time behavior for a nonlocal diffusion equation with absorption and bounded initial data. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 581-605. doi: 10.3934/dcds.2011.31.581

[6]

Marco Di Francesco, Yahya Jaafra. Multiple large-time behavior of nonlocal interaction equations with quadratic diffusion. Kinetic & Related Models, 2019, 12 (2) : 303-322. doi: 10.3934/krm.2019013

[7]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[8]

Genni Fragnelli, A. Idrissi, L. Maniar. The asymptotic behavior of a population equation with diffusion and delayed birth process. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 735-754. doi: 10.3934/dcdsb.2007.7.735

[9]

Keng Deng, Yixiang Wu. Asymptotic behavior for a reaction-diffusion population model with delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 385-395. doi: 10.3934/dcdsb.2015.20.385

[10]

Keng Deng. Asymptotic behavior of an SIR reaction-diffusion model with a linear source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5945-5957. doi: 10.3934/dcdsb.2019114

[11]

Fang-Di Dong, Wan-Tong Li, Jia-Bing Wang. Asymptotic behavior of traveling waves for a three-component system with nonlocal dispersal and its application. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6291-6318. doi: 10.3934/dcds.2017272

[12]

Kun Li, Jianhua Huang, Xiong Li. Asymptotic behavior and uniqueness of traveling wave fronts in a delayed nonlocal dispersal competitive system. Communications on Pure & Applied Analysis, 2017, 16 (1) : 131-150. doi: 10.3934/cpaa.2017006

[13]

Huimin Liang, Peixuan Weng, Yanling Tian. Threshold asymptotic behaviors for a delayed nonlocal reaction-diffusion model of mistletoes and birds in a 2D strip. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1471-1495. doi: 10.3934/cpaa.2016.15.1471

[14]

Kazuo Yamazaki, Xueying Wang. Global well-posedness and asymptotic behavior of solutions to a reaction-convection-diffusion cholera epidemic model. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1297-1316. doi: 10.3934/dcdsb.2016.21.1297

[15]

Marco Di Francesco, Alexander Lorz, Peter A. Markowich. Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1437-1453. doi: 10.3934/dcds.2010.28.1437

[16]

Zhipeng Qiu, Jun Yu, Yun Zou. The asymptotic behavior of a chemostat model. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 721-727. doi: 10.3934/dcdsb.2004.4.721

[17]

Marek Fila, Hannes Stuke. Special asymptotics for a critical fast diffusion equation. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 725-735. doi: 10.3934/dcdss.2014.7.725

[18]

Laurent Boudin, Bérénice Grec, Milana Pavić, Francesco Salvarani. Diffusion asymptotics of a kinetic model for gaseous mixtures. Kinetic & Related Models, 2013, 6 (1) : 137-157. doi: 10.3934/krm.2013.6.137

[19]

Sergey A. Denisov. The generic behavior of solutions to some evolution equations: Asymptotics and Sobolev norms. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 77-113. doi: 10.3934/dcds.2011.30.77

[20]

Mykhailo Potomkin. Asymptotic behavior of thermoviscoelastic Berger plate. Communications on Pure & Applied Analysis, 2010, 9 (1) : 161-192. doi: 10.3934/cpaa.2010.9.161

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (4)

[Back to Top]