Citation: |
[1] |
M. Bertsch, M. E. Gurtin, D. Hilhorst and L. A. Peletier, On interacting populations that disperse to avoid crowding: Preservation of segregation, J. Math. Biol., 23 (1985), 1-13.doi: 10.1007/BF00276555. |
[2] |
M. Bertsch, M. Mimura and T. Wakasa, Modeling contact inhibition of growth: Traveling waves, Netw. Heterog. Media, 8 (2013), 131-147.doi: 10.3934/nhm.2013.8.131. |
[3] |
M. Bertsch, R. Dal Passo and M. Mimura, A free boundary problem arising in a simplified tumour growth model of contact inhibition, Interfaces and Free Boundaries, 12 (2010), 235-250.doi: 10.4171/IFB/233. |
[4] |
M. Bertsch, D. Hilhorst, H. Izuhara and M. Mimura, A nonlinear parabolic-hyperbolic system for contact inhibition of cell-growth, Diff. Equ. Appl., 4 (2012), 137-157.doi: 10.7153/dea-04-09. |
[5] |
S. N. Busenberg and C. C. Travis, Epidemic models with spatial spread due to population migration, J. Math. Biol., 16 (1983), 181-198.doi: 10.1007/BF00276056. |
[6] |
M. A. J. Chaplain, L. Graziano and L. Preziosi, Mathematical modelling of the loss of tissue compression responsiveness and its role in solid tumour development, Math. Med. Biol., 23 (2006), 197-229.doi: 10.1093/imammb/dql009. |
[7] |
J. I. Díaz and S. Shmarev, Lagrangian approach to the study of level sets: Application to a free boundary problem in climatology, Arch. Ration. Mech. Anal., 194 (2009), 75-103.doi: 10.1007/s00205-008-0164-y. |
[8] |
J. I. Díaz and S. Shmarev, Lagrangian approach to the study of level sets. II. A quasilinear equation in climatology, J. Math. Anal. Appl., 352 (2009), 475-495.doi: 10.1016/j.jmaa.2008.09.046. |
[9] |
G.-Q. Chen and H. Frid, Divergence-measure fields and hyperbolic conservation laws, Arch. Ration. Mech. Anal., 147 (1999), 89-118.doi: 10.1007/s002050050146. |
[10] |
G. Galiano and V. Selgas, On a cross-diffusion segregation problem arising from a model of interacting particles, Nonlinear Anal. Real World Appl., 18 (2014), 34-49.doi: 10.1016/j.nonrwa.2014.02.001. |
[11] |
P. Grisvard, Elliptic Problems in Nonsmooth Domains, Monographs and Studies in Mathematics, 24. Pitman (Advanced Publishing Program), Boston, MA, 1985. xiv+410 pp. |
[12] |
M. E. Gurtin and A. C. Pipkin, On interacting populations that disperse to avoid crowding, Q. Appl. Math., 42 (1984), 87-94. |
[13] |
A. Kolmogorov and S. Fomin, Elements of the Theory of Functions and Functional Analysis. Vol. 2: Measure. The Lebesgue Integral. Hilbert Space, Translated from the first (1960) Russian ed. by Hyman Kamel and Horace Komm Graylock Press, Albany, N.Y. 1961. ix+128 pp. |
[14] |
O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'ceva, Quasillinear Equations of Parabolic Type, Translations of Mathematical Monographs 23, American Mathematical Society, Providence, 1968. |
[15] |
O. Ladyzhenskaya and N. Ural'tseva, Linear and Quasilinear Elliptic Equations, Translated from the Russian by Scripta Technica, Inc. Translation editor: Leon Ehrenpreis Academic Press, New York-London 1968. xviii+495 pp. |
[16] |
S. Shmarev, Interfaces in solutions of diffusion-absorption equations in arbitrary space dimension, Trends in partial differential equations of mathematical physics, Progr. Nonlinear Differential Equations Appl., Birkhäuser, Basel, 61 (2005), 257-273.doi: 10.1007/3-7643-7317-2_19. |
[17] |
S. Shmarev, Interfaces in multidimensional diffusion equations with absorption terms, Nonlinear Anal., 53 (2003), 791-828.doi: 10.1016/S0362-546X(03)00034-8. |
[18] |
S. Shmarev and J. L. Vazquez, The regularity of solutions of reaction-diffusion equations via Lagrangian coordinates, NoDEA Nonlinear Differential Equations Appl., 3 (1996), 465-497.doi: 10.1007/BF01193831. |