April  2015, 35(4): 1521-1530. doi: 10.3934/dcds.2015.35.1521

Strong positivity of continuous supersolutions to parabolic equations with rough boundary data

1. 

Department of Mathematics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249

Received  June 2013 Revised  May 2014 Published  November 2014

Parabolic equations given on domains with corners are considered. Under very weak assumption on the coefficients, it will be shown that continuous nonnegative supersolutions are strictly positive.
Citation: Dung Le. Strong positivity of continuous supersolutions to parabolic equations with rough boundary data. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1521-1530. doi: 10.3934/dcds.2015.35.1521
References:
[1]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction Diffusion Equations,, Wiley series in mathematical and computational biology, (2003).  doi: 10.1002/0470871296.  Google Scholar

[2]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type,, AMS Transl. Monographs, (1968).   Google Scholar

[3]

D. Le and H. Smith, Strong positivity of solutions to parabolic and elliptic equations on nonsmooth domains,, J. Math. Anal. Appl., 275 (2002), 208.  doi: 10.1016/S0022-247X(02)00314-1.  Google Scholar

[4]

H. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems,, Math. Surveys and Monographs, (1995).   Google Scholar

show all references

References:
[1]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction Diffusion Equations,, Wiley series in mathematical and computational biology, (2003).  doi: 10.1002/0470871296.  Google Scholar

[2]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'tseva, Linear and Quasilinear Equations of Parabolic Type,, AMS Transl. Monographs, (1968).   Google Scholar

[3]

D. Le and H. Smith, Strong positivity of solutions to parabolic and elliptic equations on nonsmooth domains,, J. Math. Anal. Appl., 275 (2002), 208.  doi: 10.1016/S0022-247X(02)00314-1.  Google Scholar

[4]

H. Smith, Monotone Dynamical Systems. An Introduction to the Theory of Competitive and Cooperative Systems,, Math. Surveys and Monographs, (1995).   Google Scholar

[1]

Alberto Ferrero, Filippo Gazzola, Hans-Christoph Grunau. Decay and local eventual positivity for biharmonic parabolic equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1129-1157. doi: 10.3934/dcds.2008.21.1129

[2]

Young-Sam Kwon. Strong traces for degenerate parabolic-hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1275-1286. doi: 10.3934/dcds.2009.25.1275

[3]

Jaan Janno, Kairi Kasemets. A positivity principle for parabolic integro-differential equations and inverse problems with final overdetermination. Inverse Problems & Imaging, 2009, 3 (1) : 17-41. doi: 10.3934/ipi.2009.3.17

[4]

Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395

[5]

Simona Fornaro, Maria Sosio, Vincenzo Vespri. $L^r_{ loc}-L^\infty_{ loc}$ estimates and expansion of positivity for a class of doubly non linear singular parabolic equations. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 737-760. doi: 10.3934/dcdss.2014.7.737

[6]

Alexandra Rodkina, Henri Schurz. On positivity and boundedness of solutions of nonlinear stochastic difference equations. Conference Publications, 2009, 2009 (Special) : 640-649. doi: 10.3934/proc.2009.2009.640

[7]

Dario Pighin, Enrique Zuazua. Controllability under positivity constraints of semilinear heat equations. Mathematical Control & Related Fields, 2018, 8 (3&4) : 935-964. doi: 10.3934/mcrf.2018041

[8]

Jesus Ildefonso Díaz, Jacqueline Fleckinger-Pellé. Positivity for large time of solutions of the heat equation: the parabolic antimaximum principle. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 193-200. doi: 10.3934/dcds.2004.10.193

[9]

Nikolaos Halidias. Construction of positivity preserving numerical schemes for some multidimensional stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 153-160. doi: 10.3934/dcdsb.2015.20.153

[10]

Inbo Sim, Yun-Ho Kim. Existence of solutions and positivity of the infimum eigenvalue for degenerate elliptic equations with variable exponents. Conference Publications, 2013, 2013 (special) : 695-707. doi: 10.3934/proc.2013.2013.695

[11]

Michele V. Bartuccelli, K. B. Blyuss, Y. N. Kyrychko. Length scales and positivity of solutions of a class of reaction-diffusion equations. Communications on Pure & Applied Analysis, 2004, 3 (1) : 25-40. doi: 10.3934/cpaa.2004.3.25

[12]

Yijing Sun, Yuxin Tan. Kirchhoff type equations with strong singularities. Communications on Pure & Applied Analysis, 2019, 18 (1) : 181-193. doi: 10.3934/cpaa.2019010

[13]

Jochen Merker, Aleš Matas. Positivity of self-similar solutions of doubly nonlinear reaction-diffusion equations. Conference Publications, 2015, 2015 (special) : 817-825. doi: 10.3934/proc.2015.0817

[14]

Cheng Wang, Jian-Guo Liu. Positivity property of second-order flux-splitting schemes for the compressible Euler equations. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 201-228. doi: 10.3934/dcdsb.2003.3.201

[15]

Gianluca Crippa, Elizaveta Semenova, Stefano Spirito. Strong continuity for the 2D Euler equations. Kinetic & Related Models, 2015, 8 (4) : 685-689. doi: 10.3934/krm.2015.8.685

[16]

Tong Tang, Hongjun Gao. Local strong solutions to the compressible viscous magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - B, 2016, 21 (5) : 1617-1633. doi: 10.3934/dcdsb.2016014

[17]

Juraj Földes, Peter Poláčik. On asymptotically symmetric parabolic equations. Networks & Heterogeneous Media, 2012, 7 (4) : 673-689. doi: 10.3934/nhm.2012.7.673

[18]

Xingwang Xu, Paul C. Yang. Positivity of Paneitz operators. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 329-342. doi: 10.3934/dcds.2001.7.329

[19]

Ciprian G. Gal. On the strong-to-strong interaction case for doubly nonlocal Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 131-167. doi: 10.3934/dcds.2017006

[20]

Masahito Ohta. Strong instability of standing waves for nonlinear Schrödinger equations with a partial confinement. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1671-1680. doi: 10.3934/cpaa.2018080

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]