-
Previous Article
Small-divisor equation with large-variable coefficient and periodic solutions of DNLS equations
- DCDS Home
- This Issue
-
Next Article
Bifurcation diagrams and multiplicity for nonlocal elliptic equations modeling gravitating systems based on Fermi--Dirac statistics
Liouville theorem for an integral system on the upper half space
1. | School of Statistics, Xi'an University of Finance and Economics, Xi'an, Shaanxi, 710100, China |
2. | Department of Mathematics, Central Michigan University, Mount Pleasant, MI 48859, United States |
References:
[1] |
G. Bianchi, Non-existence of positive solutions to semilinear elliptic equations on $\mathbbR^n$ or $\mathbbR^n_+$ through the method of moving planes,, Comm. Partial Diff. Eqs., 22 (1997), 1671.
doi: 10.1080/03605309708821315. |
[2] |
L. Cao and Z. Dai, A Liouville-type theorem for an integral equation on a half-space $\mathbbR^n_+$,, J. Math. Anal. Appl., 389 (2012), 1365.
doi: 10.1016/j.jmaa.2012.01.015. |
[3] |
W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615.
doi: 10.1215/S0012-7094-91-06325-8. |
[4] |
W. Chen and C. Li, An integral system and the Lane-Emdem conjecture,, Disc. Cont. Dyn. Sys., 24 (2009), 1167.
doi: 10.3934/dcds.2009.24.1167. |
[5] |
W. Chen and C. Li, Super Polyharmonic Property of Solutions for PDE Systems and Its Applications,, Comm. Pure and Appl. Anal., 12 (2013), 2497.
doi: 10.3934/cpaa.2013.12.2497. |
[6] |
W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Comm. Partial Diff. Eqs., 30 (2005), 59.
doi: 10.1081/PDE-200044445. |
[7] |
W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330.
doi: 10.1002/cpa.20116. |
[8] |
C. Chen and C. S. Lin, Local behavior of singular positive solutions of semilinear elliptic equations with Sobolev exponent,, Duke Math. J., 78 (1995), 315.
doi: 10.1215/S0012-7094-95-07814-4. |
[9] |
L. Damascelli and F. Gladiali, Some nonexistence results for positive solutions of elliptic equations in unbounded domains,, Rev. Mat. Iberoamericana, 20 (2004), 67.
|
[10] |
J. Dou, C. Qu and Y. Han, Symmetry and nonexistence of positive solutions to an integral system with weighted functions,, Sci. China Math., 54 (2011), 753.
doi: 10.1007/s11425-011-4177-x. |
[11] |
J. Dou and M. Zhu, Sharp Hardy-Littlewood-Sobolev inequality on the upper half space,, Int. Math. Res. Notices, 2014 (2014).
doi: 10.1093/imrn/rnt213. |
[12] |
B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbbR^n$,, in Math. Anal. Appl., (1981), 369.
|
[13] |
B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations,, Comm. Pure Appl. Math., 34 (1981), 525.
doi: 10.1002/cpa.3160340406. |
[14] |
B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations,, Comm. Partial Diff. Eqs., 6 (1981), 883.
doi: 10.1080/03605308108820196. |
[15] |
Y. Guo and J. Liu, Liouville type theorems for positive solutions of elliptic system in $\mathbbR^n$,, Comm. Partial Differ. Eqs., 33 (2008), 263.
doi: 10.1080/03605300701257476. |
[16] |
F. B. Hang, On the integral systems related to Hardy-Littlewood-Sobolev inequality,, Math. Res. Lett., 14 (2007), 373.
doi: 10.4310/MRL.2007.v14.n3.a2. |
[17] |
C. Li, Local asymptotic symnwtry of singular solutions to nonlinear elliptic equations,, Invent. Math., 123 (1996), 221.
doi: 10.1007/s002220050023. |
[18] |
Y. Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres,, J. Eur. Math. Soc., 6 (2004), 153.
|
[19] |
Y. Y. Li and L. Zhang, Liouville type theorems and Harnack type inequalities for semilinear elliptic equations,, J. D'Anal. Math., 90 (2003), 27.
doi: 10.1007/BF02786551. |
[20] |
Y. Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres,, Duke Math. J., 80 (1995), 383.
doi: 10.1215/S0012-7094-95-08016-8. |
[21] |
Y. Lou and M. Zhu, Classification of nonnegative solutions to some elliptic problems,, Diff. Integ. Eqs., 12 (1999), 601.
|
[22] |
W. Reichel and T. Weth, A prior bounds and a Liouville theorem on a half-space for higher-order elliptic Dirichlet problems,, Math. Z., 261 (2009), 805.
doi: 10.1007/s00209-008-0352-3. |
[23] |
X. Yu, Liouville type theorems for integral equations and integral systems,, Calc. Var. PDE, 46 (2013), 75.
doi: 10.1007/s00526-011-0474-z. |
show all references
References:
[1] |
G. Bianchi, Non-existence of positive solutions to semilinear elliptic equations on $\mathbbR^n$ or $\mathbbR^n_+$ through the method of moving planes,, Comm. Partial Diff. Eqs., 22 (1997), 1671.
doi: 10.1080/03605309708821315. |
[2] |
L. Cao and Z. Dai, A Liouville-type theorem for an integral equation on a half-space $\mathbbR^n_+$,, J. Math. Anal. Appl., 389 (2012), 1365.
doi: 10.1016/j.jmaa.2012.01.015. |
[3] |
W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615.
doi: 10.1215/S0012-7094-91-06325-8. |
[4] |
W. Chen and C. Li, An integral system and the Lane-Emdem conjecture,, Disc. Cont. Dyn. Sys., 24 (2009), 1167.
doi: 10.3934/dcds.2009.24.1167. |
[5] |
W. Chen and C. Li, Super Polyharmonic Property of Solutions for PDE Systems and Its Applications,, Comm. Pure and Appl. Anal., 12 (2013), 2497.
doi: 10.3934/cpaa.2013.12.2497. |
[6] |
W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Comm. Partial Diff. Eqs., 30 (2005), 59.
doi: 10.1081/PDE-200044445. |
[7] |
W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330.
doi: 10.1002/cpa.20116. |
[8] |
C. Chen and C. S. Lin, Local behavior of singular positive solutions of semilinear elliptic equations with Sobolev exponent,, Duke Math. J., 78 (1995), 315.
doi: 10.1215/S0012-7094-95-07814-4. |
[9] |
L. Damascelli and F. Gladiali, Some nonexistence results for positive solutions of elliptic equations in unbounded domains,, Rev. Mat. Iberoamericana, 20 (2004), 67.
|
[10] |
J. Dou, C. Qu and Y. Han, Symmetry and nonexistence of positive solutions to an integral system with weighted functions,, Sci. China Math., 54 (2011), 753.
doi: 10.1007/s11425-011-4177-x. |
[11] |
J. Dou and M. Zhu, Sharp Hardy-Littlewood-Sobolev inequality on the upper half space,, Int. Math. Res. Notices, 2014 (2014).
doi: 10.1093/imrn/rnt213. |
[12] |
B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbbR^n$,, in Math. Anal. Appl., (1981), 369.
|
[13] |
B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations,, Comm. Pure Appl. Math., 34 (1981), 525.
doi: 10.1002/cpa.3160340406. |
[14] |
B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations,, Comm. Partial Diff. Eqs., 6 (1981), 883.
doi: 10.1080/03605308108820196. |
[15] |
Y. Guo and J. Liu, Liouville type theorems for positive solutions of elliptic system in $\mathbbR^n$,, Comm. Partial Differ. Eqs., 33 (2008), 263.
doi: 10.1080/03605300701257476. |
[16] |
F. B. Hang, On the integral systems related to Hardy-Littlewood-Sobolev inequality,, Math. Res. Lett., 14 (2007), 373.
doi: 10.4310/MRL.2007.v14.n3.a2. |
[17] |
C. Li, Local asymptotic symnwtry of singular solutions to nonlinear elliptic equations,, Invent. Math., 123 (1996), 221.
doi: 10.1007/s002220050023. |
[18] |
Y. Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres,, J. Eur. Math. Soc., 6 (2004), 153.
|
[19] |
Y. Y. Li and L. Zhang, Liouville type theorems and Harnack type inequalities for semilinear elliptic equations,, J. D'Anal. Math., 90 (2003), 27.
doi: 10.1007/BF02786551. |
[20] |
Y. Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres,, Duke Math. J., 80 (1995), 383.
doi: 10.1215/S0012-7094-95-08016-8. |
[21] |
Y. Lou and M. Zhu, Classification of nonnegative solutions to some elliptic problems,, Diff. Integ. Eqs., 12 (1999), 601.
|
[22] |
W. Reichel and T. Weth, A prior bounds and a Liouville theorem on a half-space for higher-order elliptic Dirichlet problems,, Math. Z., 261 (2009), 805.
doi: 10.1007/s00209-008-0352-3. |
[23] |
X. Yu, Liouville type theorems for integral equations and integral systems,, Calc. Var. PDE, 46 (2013), 75.
doi: 10.1007/s00526-011-0474-z. |
[1] |
Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020395 |
[2] |
Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020049 |
[3] |
Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255 |
[4] |
Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263 |
[5] |
Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020462 |
[6] |
Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020469 |
[7] |
Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250 |
[8] |
Makram Hamouda*, Ahmed Bchatnia, Mohamed Ali Ayadi. Numerical solutions for a Timoshenko-type system with thermoelasticity with second sound. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021001 |
[9] |
Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020374 |
[10] |
Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296 |
[11] |
Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101 |
[12] |
Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020382 |
[13] |
Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020432 |
[14] |
Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020109 |
[15] |
Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262 |
[16] |
Ferenc Weisz. Dual spaces of mixed-norm martingale hardy spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020285 |
[17] |
Yao Nie, Jia Yuan. The Littlewood-Paley $ pth $-order moments in three-dimensional MHD turbulence. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020397 |
[18] |
Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274 |
[19] |
Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260 |
[20] |
Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]