\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Liouville theorem for an integral system on the upper half space

Abstract / Introduction Related Papers Cited by
  • In this paper we establish a Liouville type theorem for an integral system on the upper half space $\mathbb{R}_+^{n}$ \begin{equation*} \begin{cases} u(y)=\int_{\mathbb{R}^{n}_+}\frac{f(v(x))}{|x-y|^{n-\alpha}}dx,&\quad y\in\partial\mathbb{R}^{n}_+,\\ v(x)=\int_{\partial\mathbb{R}^{n}_+}\frac{g(u(y))}{|x-y|^{n-\alpha}}dy,&\quad x\in\mathbb{R}_+^{n}. \end{cases} \end{equation*} This integral system arises from the Euler-Lagrange equation corresponding to Hardy-Littlewood-Sobolev inequality on the upper half space. Under natural structure conditions on $f$ and $g$, we classify positive solutions to the above system basing on the method of moving sphere in integral forms and the Hardy-Littlewood-Sobolev inequality on the upper half space.
    Mathematics Subject Classification: Primary: 35B53; Secondary: 35B65.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    G. Bianchi, Non-existence of positive solutions to semilinear elliptic equations on $\mathbbR^n$ or $\mathbbR^n_+$ through the method of moving planes, Comm. Partial Diff. Eqs., 22 (1997), 1671-1690.doi: 10.1080/03605309708821315.

    [2]

    L. Cao and Z. Dai, A Liouville-type theorem for an integral equation on a half-space $\mathbbR^n_+$, J. Math. Anal. Appl., 389 (2012), 1365-1373.doi: 10.1016/j.jmaa.2012.01.015.

    [3]

    W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.doi: 10.1215/S0012-7094-91-06325-8.

    [4]

    W. Chen and C. Li, An integral system and the Lane-Emdem conjecture, Disc. Cont. Dyn. Sys., 24 (2009), 1167-1184.doi: 10.3934/dcds.2009.24.1167.

    [5]

    W. Chen and C. Li, Super Polyharmonic Property of Solutions for PDE Systems and Its Applications, Comm. Pure and Appl. Anal., 12 (2013), 2497-2514.doi: 10.3934/cpaa.2013.12.2497.

    [6]

    W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Comm. Partial Diff. Eqs., 30 (2005), 59-65.doi: 10.1081/PDE-200044445.

    [7]

    W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.doi: 10.1002/cpa.20116.

    [8]

    C. Chen and C. S. Lin, Local behavior of singular positive solutions of semilinear elliptic equations with Sobolev exponent, Duke Math. J., 78 (1995), 315-334.doi: 10.1215/S0012-7094-95-07814-4.

    [9]

    L. Damascelli and F. Gladiali, Some nonexistence results for positive solutions of elliptic equations in unbounded domains, Rev. Mat. Iberoamericana, 20 (2004), 67-86.

    [10]

    J. Dou, C. Qu and Y. Han, Symmetry and nonexistence of positive solutions to an integral system with weighted functions, Sci. China Math., 54 (2011), 753-768.doi: 10.1007/s11425-011-4177-x.

    [11]

    J. Dou and M. Zhu, Sharp Hardy-Littlewood-Sobolev inequality on the upper half space, Int. Math. Res. Notices, 2014 (2014), 37 pp.doi: 10.1093/imrn/rnt213.

    [12]

    B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbbR^n$, in Math. Anal. Appl., Part A, Adv. in Math. Suppl. Stud., 7a, Academic Press, New York-London, 1981, 369-402.

    [13]

    B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.doi: 10.1002/cpa.3160340406.

    [14]

    B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Diff. Eqs., 6 (1981), 883-901.doi: 10.1080/03605308108820196.

    [15]

    Y. Guo and J. Liu, Liouville type theorems for positive solutions of elliptic system in $\mathbbR^n$, Comm. Partial Differ. Eqs., 33 (2008), 263-284.doi: 10.1080/03605300701257476.

    [16]

    F. B. Hang, On the integral systems related to Hardy-Littlewood-Sobolev inequality, Math. Res. Lett., 14 (2007), 373-383.doi: 10.4310/MRL.2007.v14.n3.a2.

    [17]

    C. Li, Local asymptotic symnwtry of singular solutions to nonlinear elliptic equations, Invent. Math., 123 (1996), 221-231.doi: 10.1007/s002220050023.

    [18]

    Y. Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres, J. Eur. Math. Soc., 6 (2004), 153-180.

    [19]

    Y. Y. Li and L. Zhang, Liouville type theorems and Harnack type inequalities for semilinear elliptic equations, J. D'Anal. Math., 90 (2003), 27-87.doi: 10.1007/BF02786551.

    [20]

    Y. Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres, Duke Math. J., 80 (1995), 383-417.doi: 10.1215/S0012-7094-95-08016-8.

    [21]

    Y. Lou and M. Zhu, Classification of nonnegative solutions to some elliptic problems, Diff. Integ. Eqs., 12 (1999), 601-612.

    [22]

    W. Reichel and T. Weth, A prior bounds and a Liouville theorem on a half-space for higher-order elliptic Dirichlet problems, Math. Z., 261 (2009), 805-827.doi: 10.1007/s00209-008-0352-3.

    [23]

    X. Yu, Liouville type theorems for integral equations and integral systems, Calc. Var. PDE, 46 (2013), 75-95.doi: 10.1007/s00526-011-0474-z.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(156) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return