• Previous Article
    Small-divisor equation with large-variable coefficient and periodic solutions of DNLS equations
  • DCDS Home
  • This Issue
  • Next Article
    Bifurcation diagrams and multiplicity for nonlocal elliptic equations modeling gravitating systems based on Fermi--Dirac statistics
January  2015, 35(1): 155-171. doi: 10.3934/dcds.2015.35.155

Liouville theorem for an integral system on the upper half space

1. 

School of Statistics, Xi'an University of Finance and Economics, Xi'an, Shaanxi, 710100, China

2. 

Department of Mathematics, Central Michigan University, Mount Pleasant, MI 48859, United States

Received  January 2014 Revised  June 2014 Published  August 2014

In this paper we establish a Liouville type theorem for an integral system on the upper half space $\mathbb{R}_+^{n}$ \begin{equation*} \begin{cases} u(y)=\int_{\mathbb{R}^{n}_+}\frac{f(v(x))}{|x-y|^{n-\alpha}}dx,&\quad y\in\partial\mathbb{R}^{n}_+,\\ v(x)=\int_{\partial\mathbb{R}^{n}_+}\frac{g(u(y))}{|x-y|^{n-\alpha}}dy,&\quad x\in\mathbb{R}_+^{n}. \end{cases} \end{equation*} This integral system arises from the Euler-Lagrange equation corresponding to Hardy-Littlewood-Sobolev inequality on the upper half space. Under natural structure conditions on $f$ and $g$, we classify positive solutions to the above system basing on the method of moving sphere in integral forms and the Hardy-Littlewood-Sobolev inequality on the upper half space.
Citation: Jingbo Dou, Ye Li. Liouville theorem for an integral system on the upper half space. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 155-171. doi: 10.3934/dcds.2015.35.155
References:
[1]

G. Bianchi, Non-existence of positive solutions to semilinear elliptic equations on $\mathbbR^n$ or $\mathbbR^n_+$ through the method of moving planes,, Comm. Partial Diff. Eqs., 22 (1997), 1671.  doi: 10.1080/03605309708821315.  Google Scholar

[2]

L. Cao and Z. Dai, A Liouville-type theorem for an integral equation on a half-space $\mathbbR^n_+$,, J. Math. Anal. Appl., 389 (2012), 1365.  doi: 10.1016/j.jmaa.2012.01.015.  Google Scholar

[3]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615.  doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar

[4]

W. Chen and C. Li, An integral system and the Lane-Emdem conjecture,, Disc. Cont. Dyn. Sys., 24 (2009), 1167.  doi: 10.3934/dcds.2009.24.1167.  Google Scholar

[5]

W. Chen and C. Li, Super Polyharmonic Property of Solutions for PDE Systems and Its Applications,, Comm. Pure and Appl. Anal., 12 (2013), 2497.  doi: 10.3934/cpaa.2013.12.2497.  Google Scholar

[6]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Comm. Partial Diff. Eqs., 30 (2005), 59.  doi: 10.1081/PDE-200044445.  Google Scholar

[7]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[8]

C. Chen and C. S. Lin, Local behavior of singular positive solutions of semilinear elliptic equations with Sobolev exponent,, Duke Math. J., 78 (1995), 315.  doi: 10.1215/S0012-7094-95-07814-4.  Google Scholar

[9]

L. Damascelli and F. Gladiali, Some nonexistence results for positive solutions of elliptic equations in unbounded domains,, Rev. Mat. Iberoamericana, 20 (2004), 67.   Google Scholar

[10]

J. Dou, C. Qu and Y. Han, Symmetry and nonexistence of positive solutions to an integral system with weighted functions,, Sci. China Math., 54 (2011), 753.  doi: 10.1007/s11425-011-4177-x.  Google Scholar

[11]

J. Dou and M. Zhu, Sharp Hardy-Littlewood-Sobolev inequality on the upper half space,, Int. Math. Res. Notices, 2014 (2014).  doi: 10.1093/imrn/rnt213.  Google Scholar

[12]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbbR^n$,, in Math. Anal. Appl., (1981), 369.   Google Scholar

[13]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations,, Comm. Pure Appl. Math., 34 (1981), 525.  doi: 10.1002/cpa.3160340406.  Google Scholar

[14]

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations,, Comm. Partial Diff. Eqs., 6 (1981), 883.  doi: 10.1080/03605308108820196.  Google Scholar

[15]

Y. Guo and J. Liu, Liouville type theorems for positive solutions of elliptic system in $\mathbbR^n$,, Comm. Partial Differ. Eqs., 33 (2008), 263.  doi: 10.1080/03605300701257476.  Google Scholar

[16]

F. B. Hang, On the integral systems related to Hardy-Littlewood-Sobolev inequality,, Math. Res. Lett., 14 (2007), 373.  doi: 10.4310/MRL.2007.v14.n3.a2.  Google Scholar

[17]

C. Li, Local asymptotic symnwtry of singular solutions to nonlinear elliptic equations,, Invent. Math., 123 (1996), 221.  doi: 10.1007/s002220050023.  Google Scholar

[18]

Y. Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres,, J. Eur. Math. Soc., 6 (2004), 153.   Google Scholar

[19]

Y. Y. Li and L. Zhang, Liouville type theorems and Harnack type inequalities for semilinear elliptic equations,, J. D'Anal. Math., 90 (2003), 27.  doi: 10.1007/BF02786551.  Google Scholar

[20]

Y. Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres,, Duke Math. J., 80 (1995), 383.  doi: 10.1215/S0012-7094-95-08016-8.  Google Scholar

[21]

Y. Lou and M. Zhu, Classification of nonnegative solutions to some elliptic problems,, Diff. Integ. Eqs., 12 (1999), 601.   Google Scholar

[22]

W. Reichel and T. Weth, A prior bounds and a Liouville theorem on a half-space for higher-order elliptic Dirichlet problems,, Math. Z., 261 (2009), 805.  doi: 10.1007/s00209-008-0352-3.  Google Scholar

[23]

X. Yu, Liouville type theorems for integral equations and integral systems,, Calc. Var. PDE, 46 (2013), 75.  doi: 10.1007/s00526-011-0474-z.  Google Scholar

show all references

References:
[1]

G. Bianchi, Non-existence of positive solutions to semilinear elliptic equations on $\mathbbR^n$ or $\mathbbR^n_+$ through the method of moving planes,, Comm. Partial Diff. Eqs., 22 (1997), 1671.  doi: 10.1080/03605309708821315.  Google Scholar

[2]

L. Cao and Z. Dai, A Liouville-type theorem for an integral equation on a half-space $\mathbbR^n_+$,, J. Math. Anal. Appl., 389 (2012), 1365.  doi: 10.1016/j.jmaa.2012.01.015.  Google Scholar

[3]

W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615.  doi: 10.1215/S0012-7094-91-06325-8.  Google Scholar

[4]

W. Chen and C. Li, An integral system and the Lane-Emdem conjecture,, Disc. Cont. Dyn. Sys., 24 (2009), 1167.  doi: 10.3934/dcds.2009.24.1167.  Google Scholar

[5]

W. Chen and C. Li, Super Polyharmonic Property of Solutions for PDE Systems and Its Applications,, Comm. Pure and Appl. Anal., 12 (2013), 2497.  doi: 10.3934/cpaa.2013.12.2497.  Google Scholar

[6]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Comm. Partial Diff. Eqs., 30 (2005), 59.  doi: 10.1081/PDE-200044445.  Google Scholar

[7]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330.  doi: 10.1002/cpa.20116.  Google Scholar

[8]

C. Chen and C. S. Lin, Local behavior of singular positive solutions of semilinear elliptic equations with Sobolev exponent,, Duke Math. J., 78 (1995), 315.  doi: 10.1215/S0012-7094-95-07814-4.  Google Scholar

[9]

L. Damascelli and F. Gladiali, Some nonexistence results for positive solutions of elliptic equations in unbounded domains,, Rev. Mat. Iberoamericana, 20 (2004), 67.   Google Scholar

[10]

J. Dou, C. Qu and Y. Han, Symmetry and nonexistence of positive solutions to an integral system with weighted functions,, Sci. China Math., 54 (2011), 753.  doi: 10.1007/s11425-011-4177-x.  Google Scholar

[11]

J. Dou and M. Zhu, Sharp Hardy-Littlewood-Sobolev inequality on the upper half space,, Int. Math. Res. Notices, 2014 (2014).  doi: 10.1093/imrn/rnt213.  Google Scholar

[12]

B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbbR^n$,, in Math. Anal. Appl., (1981), 369.   Google Scholar

[13]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations,, Comm. Pure Appl. Math., 34 (1981), 525.  doi: 10.1002/cpa.3160340406.  Google Scholar

[14]

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations,, Comm. Partial Diff. Eqs., 6 (1981), 883.  doi: 10.1080/03605308108820196.  Google Scholar

[15]

Y. Guo and J. Liu, Liouville type theorems for positive solutions of elliptic system in $\mathbbR^n$,, Comm. Partial Differ. Eqs., 33 (2008), 263.  doi: 10.1080/03605300701257476.  Google Scholar

[16]

F. B. Hang, On the integral systems related to Hardy-Littlewood-Sobolev inequality,, Math. Res. Lett., 14 (2007), 373.  doi: 10.4310/MRL.2007.v14.n3.a2.  Google Scholar

[17]

C. Li, Local asymptotic symnwtry of singular solutions to nonlinear elliptic equations,, Invent. Math., 123 (1996), 221.  doi: 10.1007/s002220050023.  Google Scholar

[18]

Y. Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres,, J. Eur. Math. Soc., 6 (2004), 153.   Google Scholar

[19]

Y. Y. Li and L. Zhang, Liouville type theorems and Harnack type inequalities for semilinear elliptic equations,, J. D'Anal. Math., 90 (2003), 27.  doi: 10.1007/BF02786551.  Google Scholar

[20]

Y. Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres,, Duke Math. J., 80 (1995), 383.  doi: 10.1215/S0012-7094-95-08016-8.  Google Scholar

[21]

Y. Lou and M. Zhu, Classification of nonnegative solutions to some elliptic problems,, Diff. Integ. Eqs., 12 (1999), 601.   Google Scholar

[22]

W. Reichel and T. Weth, A prior bounds and a Liouville theorem on a half-space for higher-order elliptic Dirichlet problems,, Math. Z., 261 (2009), 805.  doi: 10.1007/s00209-008-0352-3.  Google Scholar

[23]

X. Yu, Liouville type theorems for integral equations and integral systems,, Calc. Var. PDE, 46 (2013), 75.  doi: 10.1007/s00526-011-0474-z.  Google Scholar

[1]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020395

[2]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[3]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[4]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[5]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[6]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[7]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[8]

Makram Hamouda*, Ahmed Bchatnia, Mohamed Ali Ayadi. Numerical solutions for a Timoshenko-type system with thermoelasticity with second sound. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021001

[9]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[10]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[11]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[12]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[13]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[14]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[15]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[16]

Ferenc Weisz. Dual spaces of mixed-norm martingale hardy spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020285

[17]

Yao Nie, Jia Yuan. The Littlewood-Paley $ pth $-order moments in three-dimensional MHD turbulence. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020397

[18]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[19]

Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260

[20]

Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (68)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]