Citation: |
[1] |
G. Bianchi, Non-existence of positive solutions to semilinear elliptic equations on $\mathbbR^n$ or $\mathbbR^n_+$ through the method of moving planes, Comm. Partial Diff. Eqs., 22 (1997), 1671-1690.doi: 10.1080/03605309708821315. |
[2] |
L. Cao and Z. Dai, A Liouville-type theorem for an integral equation on a half-space $\mathbbR^n_+$, J. Math. Anal. Appl., 389 (2012), 1365-1373.doi: 10.1016/j.jmaa.2012.01.015. |
[3] |
W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations, Duke Math. J., 63 (1991), 615-622.doi: 10.1215/S0012-7094-91-06325-8. |
[4] |
W. Chen and C. Li, An integral system and the Lane-Emdem conjecture, Disc. Cont. Dyn. Sys., 24 (2009), 1167-1184.doi: 10.3934/dcds.2009.24.1167. |
[5] |
W. Chen and C. Li, Super Polyharmonic Property of Solutions for PDE Systems and Its Applications, Comm. Pure and Appl. Anal., 12 (2013), 2497-2514.doi: 10.3934/cpaa.2013.12.2497. |
[6] |
W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations, Comm. Partial Diff. Eqs., 30 (2005), 59-65.doi: 10.1081/PDE-200044445. |
[7] |
W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math., 59 (2006), 330-343.doi: 10.1002/cpa.20116. |
[8] |
C. Chen and C. S. Lin, Local behavior of singular positive solutions of semilinear elliptic equations with Sobolev exponent, Duke Math. J., 78 (1995), 315-334.doi: 10.1215/S0012-7094-95-07814-4. |
[9] |
L. Damascelli and F. Gladiali, Some nonexistence results for positive solutions of elliptic equations in unbounded domains, Rev. Mat. Iberoamericana, 20 (2004), 67-86. |
[10] |
J. Dou, C. Qu and Y. Han, Symmetry and nonexistence of positive solutions to an integral system with weighted functions, Sci. China Math., 54 (2011), 753-768.doi: 10.1007/s11425-011-4177-x. |
[11] |
J. Dou and M. Zhu, Sharp Hardy-Littlewood-Sobolev inequality on the upper half space, Int. Math. Res. Notices, 2014 (2014), 37 pp.doi: 10.1093/imrn/rnt213. |
[12] |
B. Gidas, W. M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $\mathbbR^n$, in Math. Anal. Appl., Part A, Adv. in Math. Suppl. Stud., 7a, Academic Press, New York-London, 1981, 369-402. |
[13] |
B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations, Comm. Pure Appl. Math., 34 (1981), 525-598.doi: 10.1002/cpa.3160340406. |
[14] |
B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Diff. Eqs., 6 (1981), 883-901.doi: 10.1080/03605308108820196. |
[15] |
Y. Guo and J. Liu, Liouville type theorems for positive solutions of elliptic system in $\mathbbR^n$, Comm. Partial Differ. Eqs., 33 (2008), 263-284.doi: 10.1080/03605300701257476. |
[16] |
F. B. Hang, On the integral systems related to Hardy-Littlewood-Sobolev inequality, Math. Res. Lett., 14 (2007), 373-383.doi: 10.4310/MRL.2007.v14.n3.a2. |
[17] |
C. Li, Local asymptotic symnwtry of singular solutions to nonlinear elliptic equations, Invent. Math., 123 (1996), 221-231.doi: 10.1007/s002220050023. |
[18] |
Y. Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres, J. Eur. Math. Soc., 6 (2004), 153-180. |
[19] |
Y. Y. Li and L. Zhang, Liouville type theorems and Harnack type inequalities for semilinear elliptic equations, J. D'Anal. Math., 90 (2003), 27-87.doi: 10.1007/BF02786551. |
[20] |
Y. Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres, Duke Math. J., 80 (1995), 383-417.doi: 10.1215/S0012-7094-95-08016-8. |
[21] |
Y. Lou and M. Zhu, Classification of nonnegative solutions to some elliptic problems, Diff. Integ. Eqs., 12 (1999), 601-612. |
[22] |
W. Reichel and T. Weth, A prior bounds and a Liouville theorem on a half-space for higher-order elliptic Dirichlet problems, Math. Z., 261 (2009), 805-827.doi: 10.1007/s00209-008-0352-3. |
[23] |
X. Yu, Liouville type theorems for integral equations and integral systems, Calc. Var. PDE, 46 (2013), 75-95.doi: 10.1007/s00526-011-0474-z. |