\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Spiraling bifurcation diagrams in superlinear indefinite problems

Abstract Related Papers Cited by
  • This paper computes and discusses a series of intricate global bifurcation diagrams for a class of one-dimensional superlinear indefinite boundary value problems arising in population dynamics, under non-homogeneous boundary conditions, measured by $M>0$; the main bifurcation parameter being the amplitude $b$ of the superlinear terms.
    Mathematics Subject Classification: 65N35, 65P30, 65N22.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    S. Alama and G. Tarantello, Elliptic problems with nonlinearities indefinite in sign, J. Funct. Anal., 141 (1996), 159-215.doi: 10.1006/jfan.1996.0125.

    [2]

    E. L. Allgower and K. Georg, Introduction to Numerical Continuation Methods, SIAM Classics in Applied Mathematics 45, SIAM, Philadelphia, 2003.doi: 10.1137/1.9780898719154.

    [3]

    H. Amann and J. López-Gómez, A priori bounds and multiple solutions for superlinear indefinite elliptic problems, J. Diff. Eqns., 146 (1998), 336-374.doi: 10.1006/jdeq.1998.3440.

    [4]

    H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear Liouville theorems, Top. Meth. Nonl. Anal., 4 (1994), 59-78.

    [5]

    H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Variational methods for indefinite superlinear homogeneous elliptic problems, Nonl. Diff. Eqns. Appns., 2 (1995), 553-572.doi: 10.1007/BF01210623.

    [6]

    M. D. Bertness and R. M. Callaway, Positive interactions in communities, Trends in Ecology and Evolution, 9 (1994), 191-193.doi: 10.1016/0169-5347(94)90088-4.

    [7]

    F. Brezzi, J. Rappaz and P. A. Raviart, Finite dimensional approximation of nonlinear problems, Part I: Branches of Nonsingular Solutions, Numer. Math., 36 (1980), 1-25.doi: 10.1007/BF01395985.

    [8]

    F. Brezzi, J. Rappaz and P. A. Raviart, Finite dimensional approximation of nonlinear problems, Part II: Limit Points, Numer. Math., 37 (1981), 1-28.doi: 10.1007/BF01396184.

    [9]

    F. Brezzi, J. Rappaz and P. A. Raviart, Finite dimensional approximation of nonlinear problems, Part III: Simple bifurcation points, Numer. Math., 38 (1981), 1-30.doi: 10.1007/BF01395805.

    [10]

    R. M. Callaway and L. R. Walker, Competition and facilitation: A synthetic approach to interactions in plant communities, Ecology, 78 (1997), 1958-1965.doi: 10.2307/2265936.

    [11]

    C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods. Fundamentals in Single Domains, Springer-Verlag, Berlin, 2006.

    [12]

    A. Casal, J. C. Eilbeck and J. López-Gómez, Existence and uniqueness of coexistence states for a predator-prey model with diffusion, Diff. Int. Eqns., 7 (1994), 411-439.

    [13]

    J. H. Connell, On the prevalence and relative importance of interspecific competition: evidence from field experiments, Amer. Natur., 122 (1983), 661-696.doi: 10.1086/284165.

    [14]

    M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321-340.doi: 10.1016/0022-1236(71)90015-2.

    [15]

    M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation from simple eigenvalues and linearized stability, Arch. Rat. Mech. Anal., 52 (1973), 161-180.

    [16]

    M. Crouzeix and J. Rappaz, On Numerical Approximation in Bifurcation Theory, Recherches en Mathématiques Appliquées 13. Masson, Paris, 1990.

    [17]

    J. C. Eilbeck, The pseudo-spectral method and path-following in reaction-diffusion bifurcation studies, SIAM J. of Sci. Stat. Comput., 7 (1986), 599-610.doi: 10.1137/0907040.

    [18]

    J. García-Melián, Multiplicity of positive solutions to boundary blow up elliptic problems with sign-changing weights, J. Funct. Anal., 261 (2011), 1775-1798.doi: 10.1016/j.jfa.2011.05.018.

    [19]

    D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer, Berlin-Heidelberg, 2001.

    [20]

    M. Golubitsky and D. Schaeffer, A theory for imperfect bifurcation via singularity theory, Comm. Pure Appl. Math., 32 (1979), 21-98.doi: 10.1002/cpa.3160320103.

    [21]

    M. Golubitsky and D. G. Shaeffer, Singularity and Groups in Bifurcation Theory, Springer, 1985.

    [22]

    R. Gómez-Reñasco and J. López-Gómez, The effect of varying coefficients on the dynamics of a class of superlinear indefinite reaction diffusion equations, J. Diff. Eqns., 167 (2000), 36-72.doi: 10.1006/jdeq.2000.3772.

    [23]

    R. Gómez-Reñasco and J. López-Gómez, The uniqueness of the stable positive solution for a class of superlinear indefinite reaction diffusion equations, Diff. Int. Eqns., 14 (2001), 751-768.

    [24]

    G. E. Hutchinson, The Ecological Theater and the Evolutionary Play, Yale University Press, New Haven, Connecticut, 1965.

    [25]

    T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics, Springer, 1995.

    [26]

    H. B. Keller, Lectures on Numerical Methods in Bifurcation Problems, Tata Insitute of Fundamental Research, Springer, Berlin, 1987.

    [27]

    J. López-Gómez, Estabilidad y Bifurcación Estática. Aplicaciones y Métodos Numéricos, Cuadernos de Matemática y Mecánica, Serie Cursos y Seminarios No 4, Santa Fe, 1988.

    [28]

    J. López-Gómez, On the existence of positive solutions for some indefinite superlinear elliptic problems, Comm. Part. Diff. Eqns., 22 (1997), 1787-1804.doi: 10.1080/03605309708821320.

    [29]

    J. López-Gómez, Varying bifurcation diagrams of positive solutions for a class of indefinite superlinear boundary value problems, Trans. Amer. Math. Soc., 352 (2000), 1825-1858.doi: 10.1090/S0002-9947-99-02352-1.

    [30]

    J. López-Gómez, Global existence versus blow-up in superlinear indefinite parabolic problems, Sci. Math. Jpn., 61 (2005), 493-516.

    [31]

    J. López-Gómez, Metasolutions: Malthus versus Verhulst in population dynamics. A dream of Volterra. Stationary partial differential equations, in Handbook of Differential Equations: Stationary partial differential equations. Vol. II (eds. M. Chipot and P. Quittner), Elsevier, II (2005), 211-309.doi: 10.1016/S1874-5733(05)80012-9.

    [32]

    J. López-Gómez, Optimal uniqueness theorems and exact blow-up rates of large solutions, J. Diff. Eqns., 224 (2006), 385-439.doi: 10.1016/j.jde.2005.08.008.

    [33]

    J. López-Gómez, J. C. Eilbeck, K. Duncan and M. Molina-Meyer, Structure of solution manifolds in a strongly coupled elliptic system, IMA Conference on Dynamics of Numerics and Numerics of Dynamics (Bristol, 1990), IMA J. Numer. Anal., 12 (1992), 405-428.doi: 10.1093/imanum/12.3.405.

    [34]

    J. López-Gómez and M. Molina-Meyer, The maximum principle for cooperative weakly coupled elliptic systems and some applications, Diff. Int. Eqns., 7 (1994), 383-398.

    [35]

    J. López-Gómez and M. Molina-Meyer, Superlinear indefinite systems: Beyond Lotka-Volterra models, J. Diff. Eqns., 221 (2006), 343-411.doi: 10.1016/j.jde.2005.05.009.

    [36]

    J. López-Gómez and M. Molina-Meyer, The competitive exclusion principle versus biodiversity through segregation and further adaptation to spatial heterogeneities, Theoretical Population Biology, 69 (2006), 94-109.

    [37]

    J. López-Gómez and M. Molina-Meyer, Biodiversity through co-opetition, Discrete and Continuous Dynamical Systems B, 8 (2007), 187-205.doi: 10.3934/dcdsb.2007.8.187.

    [38]

    J. López-Gómez and M. Molina-Meyer, Modeling coopetition, Mathematics and Computers in Simulation, 76 (2007), 132-140.doi: 10.1016/j.matcom.2007.01.035.

    [39]

    J. López-Gómez, M. Molina-Meyer and A. Tellini, The uniqueness of the linearly stable positive solution for a class of superlinear indefinite problems with nonhomogeneous boundary conditions, J. Diff. Eqns., 255 (2013), 503-523.doi: 10.1016/j.jde.2013.04.019.

    [40]

    J. López-Gómez, M. Molina-Meyer and M. Villareal, Numerical computation of coexistence states, SIAM J. Numer. Anal., 29 (1992), 1074-1092.doi: 10.1137/0729065.

    [41]

    J. López-Gómez, A. Tellini and F. Zanolin, High multiplicity and complexity of the bifurcation diagrams of large solutions for a class of superlinear indefinite problems, Comm. Pure Appl. Anal., 13 (2014), 1-73.doi: 10.3934/cpaa.2014.13.1.

    [42]

    J. Mawhin, D. Papini and F. Zanolin, Boundary blow-up for differential equations with indefinite weight, J. Diff. Eqns., 188 (2003), 33-51.doi: 10.1016/S0022-0396(02)00073-6.

    [43]

    L. Ping, J. Shi and Y. Wang, Imperfect transcritical and pitchfork bifurcations, J. Funct. Anal., 251 (2007), 573-600.doi: 10.1016/j.jfa.2007.06.015.

    [44]

    F. I. Pugnaire (Editor), Positive Plant Interactions and Community Dynamics, Fundación BBVA, CRC Press, Boca Raton, 2010.

    [45]

    M. B. Saffo, Invertebrates in endosymbiotic associations, Amer. Zool., 32 (1992), 557-565.doi: 10.1093/icb/32.4.557.

    [46]

    T. W. Shoener, Field experiments on interspecific competition, Amer. Natur., 122 (1983), 240-285.doi: 10.1086/284133.

    [47]

    J. L. Wulff, Clonal organisms and the evolution of mutualism. In Jackson, J.B.C., Buss, L.W., Cook, R.E. (Eds.), Population Biology and Evolution of Clonal Organisms, 437-466, Yale University Press, New Haven, Connecticut, 1985.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(123) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return