Citation: |
[1] |
S. Alama and G. Tarantello, Elliptic problems with nonlinearities indefinite in sign, J. Funct. Anal., 141 (1996), 159-215.doi: 10.1006/jfan.1996.0125. |
[2] |
E. L. Allgower and K. Georg, Introduction to Numerical Continuation Methods, SIAM Classics in Applied Mathematics 45, SIAM, Philadelphia, 2003.doi: 10.1137/1.9780898719154. |
[3] |
H. Amann and J. López-Gómez, A priori bounds and multiple solutions for superlinear indefinite elliptic problems, J. Diff. Eqns., 146 (1998), 336-374.doi: 10.1006/jdeq.1998.3440. |
[4] |
H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear Liouville theorems, Top. Meth. Nonl. Anal., 4 (1994), 59-78. |
[5] |
H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Variational methods for indefinite superlinear homogeneous elliptic problems, Nonl. Diff. Eqns. Appns., 2 (1995), 553-572.doi: 10.1007/BF01210623. |
[6] |
M. D. Bertness and R. M. Callaway, Positive interactions in communities, Trends in Ecology and Evolution, 9 (1994), 191-193.doi: 10.1016/0169-5347(94)90088-4. |
[7] |
F. Brezzi, J. Rappaz and P. A. Raviart, Finite dimensional approximation of nonlinear problems, Part I: Branches of Nonsingular Solutions, Numer. Math., 36 (1980), 1-25.doi: 10.1007/BF01395985. |
[8] |
F. Brezzi, J. Rappaz and P. A. Raviart, Finite dimensional approximation of nonlinear problems, Part II: Limit Points, Numer. Math., 37 (1981), 1-28.doi: 10.1007/BF01396184. |
[9] |
F. Brezzi, J. Rappaz and P. A. Raviart, Finite dimensional approximation of nonlinear problems, Part III: Simple bifurcation points, Numer. Math., 38 (1981), 1-30.doi: 10.1007/BF01395805. |
[10] |
R. M. Callaway and L. R. Walker, Competition and facilitation: A synthetic approach to interactions in plant communities, Ecology, 78 (1997), 1958-1965.doi: 10.2307/2265936. |
[11] |
C. Canuto, M. Y. Hussaini, A. Quarteroni and T. A. Zang, Spectral Methods. Fundamentals in Single Domains, Springer-Verlag, Berlin, 2006. |
[12] |
A. Casal, J. C. Eilbeck and J. López-Gómez, Existence and uniqueness of coexistence states for a predator-prey model with diffusion, Diff. Int. Eqns., 7 (1994), 411-439. |
[13] |
J. H. Connell, On the prevalence and relative importance of interspecific competition: evidence from field experiments, Amer. Natur., 122 (1983), 661-696.doi: 10.1086/284165. |
[14] |
M. G. Crandall and P. H. Rabinowitz, Bifurcation from simple eigenvalues, J. Funct. Anal., 8 (1971), 321-340.doi: 10.1016/0022-1236(71)90015-2. |
[15] |
M. G. Crandall and P. H. Rabinowitz, Bifurcation, perturbation from simple eigenvalues and linearized stability, Arch. Rat. Mech. Anal., 52 (1973), 161-180. |
[16] |
M. Crouzeix and J. Rappaz, On Numerical Approximation in Bifurcation Theory, Recherches en Mathématiques Appliquées 13. Masson, Paris, 1990. |
[17] |
J. C. Eilbeck, The pseudo-spectral method and path-following in reaction-diffusion bifurcation studies, SIAM J. of Sci. Stat. Comput., 7 (1986), 599-610.doi: 10.1137/0907040. |
[18] |
J. García-Melián, Multiplicity of positive solutions to boundary blow up elliptic problems with sign-changing weights, J. Funct. Anal., 261 (2011), 1775-1798.doi: 10.1016/j.jfa.2011.05.018. |
[19] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Classics in Mathematics, Springer, Berlin-Heidelberg, 2001. |
[20] |
M. Golubitsky and D. Schaeffer, A theory for imperfect bifurcation via singularity theory, Comm. Pure Appl. Math., 32 (1979), 21-98.doi: 10.1002/cpa.3160320103. |
[21] |
M. Golubitsky and D. G. Shaeffer, Singularity and Groups in Bifurcation Theory, Springer, 1985. |
[22] |
R. Gómez-Reñasco and J. López-Gómez, The effect of varying coefficients on the dynamics of a class of superlinear indefinite reaction diffusion equations, J. Diff. Eqns., 167 (2000), 36-72.doi: 10.1006/jdeq.2000.3772. |
[23] |
R. Gómez-Reñasco and J. López-Gómez, The uniqueness of the stable positive solution for a class of superlinear indefinite reaction diffusion equations, Diff. Int. Eqns., 14 (2001), 751-768. |
[24] |
G. E. Hutchinson, The Ecological Theater and the Evolutionary Play, Yale University Press, New Haven, Connecticut, 1965. |
[25] |
T. Kato, Perturbation Theory for Linear Operators, Classics in Mathematics, Springer, 1995. |
[26] |
H. B. Keller, Lectures on Numerical Methods in Bifurcation Problems, Tata Insitute of Fundamental Research, Springer, Berlin, 1987. |
[27] |
J. López-Gómez, Estabilidad y Bifurcación Estática. Aplicaciones y Métodos Numéricos, Cuadernos de Matemática y Mecánica, Serie Cursos y Seminarios No 4, Santa Fe, 1988. |
[28] |
J. López-Gómez, On the existence of positive solutions for some indefinite superlinear elliptic problems, Comm. Part. Diff. Eqns., 22 (1997), 1787-1804.doi: 10.1080/03605309708821320. |
[29] |
J. López-Gómez, Varying bifurcation diagrams of positive solutions for a class of indefinite superlinear boundary value problems, Trans. Amer. Math. Soc., 352 (2000), 1825-1858.doi: 10.1090/S0002-9947-99-02352-1. |
[30] |
J. López-Gómez, Global existence versus blow-up in superlinear indefinite parabolic problems, Sci. Math. Jpn., 61 (2005), 493-516. |
[31] |
J. López-Gómez, Metasolutions: Malthus versus Verhulst in population dynamics. A dream of Volterra. Stationary partial differential equations, in Handbook of Differential Equations: Stationary partial differential equations. Vol. II (eds. M. Chipot and P. Quittner), Elsevier, II (2005), 211-309.doi: 10.1016/S1874-5733(05)80012-9. |
[32] |
J. López-Gómez, Optimal uniqueness theorems and exact blow-up rates of large solutions, J. Diff. Eqns., 224 (2006), 385-439.doi: 10.1016/j.jde.2005.08.008. |
[33] |
J. López-Gómez, J. C. Eilbeck, K. Duncan and M. Molina-Meyer, Structure of solution manifolds in a strongly coupled elliptic system, IMA Conference on Dynamics of Numerics and Numerics of Dynamics (Bristol, 1990), IMA J. Numer. Anal., 12 (1992), 405-428.doi: 10.1093/imanum/12.3.405. |
[34] |
J. López-Gómez and M. Molina-Meyer, The maximum principle for cooperative weakly coupled elliptic systems and some applications, Diff. Int. Eqns., 7 (1994), 383-398. |
[35] |
J. López-Gómez and M. Molina-Meyer, Superlinear indefinite systems: Beyond Lotka-Volterra models, J. Diff. Eqns., 221 (2006), 343-411.doi: 10.1016/j.jde.2005.05.009. |
[36] |
J. López-Gómez and M. Molina-Meyer, The competitive exclusion principle versus biodiversity through segregation and further adaptation to spatial heterogeneities, Theoretical Population Biology, 69 (2006), 94-109. |
[37] |
J. López-Gómez and M. Molina-Meyer, Biodiversity through co-opetition, Discrete and Continuous Dynamical Systems B, 8 (2007), 187-205.doi: 10.3934/dcdsb.2007.8.187. |
[38] |
J. López-Gómez and M. Molina-Meyer, Modeling coopetition, Mathematics and Computers in Simulation, 76 (2007), 132-140.doi: 10.1016/j.matcom.2007.01.035. |
[39] |
J. López-Gómez, M. Molina-Meyer and A. Tellini, The uniqueness of the linearly stable positive solution for a class of superlinear indefinite problems with nonhomogeneous boundary conditions, J. Diff. Eqns., 255 (2013), 503-523.doi: 10.1016/j.jde.2013.04.019. |
[40] |
J. López-Gómez, M. Molina-Meyer and M. Villareal, Numerical computation of coexistence states, SIAM J. Numer. Anal., 29 (1992), 1074-1092.doi: 10.1137/0729065. |
[41] |
J. López-Gómez, A. Tellini and F. Zanolin, High multiplicity and complexity of the bifurcation diagrams of large solutions for a class of superlinear indefinite problems, Comm. Pure Appl. Anal., 13 (2014), 1-73.doi: 10.3934/cpaa.2014.13.1. |
[42] |
J. Mawhin, D. Papini and F. Zanolin, Boundary blow-up for differential equations with indefinite weight, J. Diff. Eqns., 188 (2003), 33-51.doi: 10.1016/S0022-0396(02)00073-6. |
[43] |
L. Ping, J. Shi and Y. Wang, Imperfect transcritical and pitchfork bifurcations, J. Funct. Anal., 251 (2007), 573-600.doi: 10.1016/j.jfa.2007.06.015. |
[44] |
F. I. Pugnaire (Editor), Positive Plant Interactions and Community Dynamics, Fundación BBVA, CRC Press, Boca Raton, 2010. |
[45] |
M. B. Saffo, Invertebrates in endosymbiotic associations, Amer. Zool., 32 (1992), 557-565.doi: 10.1093/icb/32.4.557. |
[46] |
T. W. Shoener, Field experiments on interspecific competition, Amer. Natur., 122 (1983), 240-285.doi: 10.1086/284133. |
[47] |
J. L. Wulff, Clonal organisms and the evolution of mutualism. In Jackson, J.B.C., Buss, L.W., Cook, R.E. (Eds.), Population Biology and Evolution of Clonal Organisms, 437-466, Yale University Press, New Haven, Connecticut, 1985. |