-
Previous Article
On principal spectrum points/principal eigenvalues of nonlocal dispersal operators and applications
- DCDS Home
- This Issue
-
Next Article
Spreading speeds and traveling waves of nonlocal monostable equations in time and space periodic habitats
Avoidance behavior in intraguild predation communities: A cross-diffusion model
1. | National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN 37996, United States |
2. | Department of Mathematics, University of Miami, Coral Gables, FL 33146, United States |
References:
[1] |
H. Amann, Dynamic theory of quasilinear parabolic equaitons I: Abstract evolution equaitons, Nonlinear Analysis: Theory, Methods & Applications, 12 (1988), 895-919.
doi: 10.1016/0362-546X(88)90073-9. |
[2] |
H. Amann, Dynamic theory of quasilinear parabolic systems III: Global existence, Mathematische Zeitschrift, 202 (1989), 219-250.
doi: 10.1007/BF01215256. |
[3] |
H. Amann, Dynamic theory of quasilinear parabolic systems II: reaction-diffusion systems, Differential and Integral Equations, 3 (1990), 13-75. |
[4] |
M. Arim and P. A. Marquet, Intraguild predation: A widespread interaction related to species biology, Ecology Letters, 7 (2004), 557-564.
doi: 10.1111/j.1461-0248.2004.00613.x. |
[5] |
P. Amarasekare, Productivity, dispersal and the coexistence of intraguild predators and prey, Journal of Theoretical Biology, 243 (2006), 121-133.
doi: 10.1016/j.jtbi.2006.06.007. |
[6] |
P. Amarasekare, Spatial dynamics of communities with intraguild predation: The role of dispersal strategies, The American Naturalist, 170 (2007), 819-831.
doi: 10.1086/522837. |
[7] |
J. E. Billotti and J. P. LaSalle, Dissipative periodic processes, Bulletin of the American Mathematical Society, 77 (1971), 1082-1088.
doi: 10.1090/S0002-9904-1971-12879-3. |
[8] |
R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley, Chichester, UK, 2003.
doi: 10.1002/0470871296. |
[9] |
S. M. Durant, Living with the enemy: Avoidance of hyenas and lions by cheetahs in the Serengeti, Behavioral Ecology, 11 (2000), 624-632.
doi: 10.1093/beheco/11.6.624. |
[10] |
J. K. Hale and P. Waltman, Persistence in infinite-dimensional systems, SIAM Journal on Mathematical Analysis, 20 (1989), 388-395.
doi: 10.1137/0520025. |
[11] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983.
doi: 10.1007/978-3-642-61798-0. |
[12] |
R. D. Holt and G. A. Polis, A theoretical framework for intraguild predation, The American Naturalist, 149 (1997), 745-764.
doi: 10.1086/286018. |
[13] |
T. Kimbrell, R. D. Holt and P. Lundberg, The influence of vigilance on intraguild predation, Journal of Theoretical Biology, 249 (2007), 218-234.
doi: 10.1016/j.jtbi.2007.07.031. |
[14] |
D. Le, Cross diffusion systems on n spatial dimensional domains, Indiana University Mathematics Journal, 51 (2002), 625-643.
doi: 10.1512/iumj.2002.51.2198. |
[15] |
G. Lieberman, Second Order Parabolic Equations, World Scientific, Singapore, 1996.
doi: 10.1142/3302. |
[16] |
E. Lucas, D. Coderre and J. Brodeur, Selection of molting and pupation sites by Coleomegilla maculata (Coleoptera: Coccinellidae): avoidance of intraguild predation, Environmental Entomology, 29 (2000), 454-459.
doi: 10.1603/0046-225X-29.3.454. |
[17] |
L. Nirenberg, On elliptic partial differential equations, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 13 (1959), 115-162. |
[18] |
T. Okuyama and R. L. Ruyle, Analysis of adaptive foraging in an intraguild predation system, Web Ecology, 4 (2003), 1-6.
doi: 10.5194/we-4-1-2003. |
[19] |
F. Palomares and P. Ferreras, Spatial relationships between Iberian lynx and other carnivores in an area of southwestern Spain, Journal of Applied Ecology, 33 (1996), 5-13. |
[20] |
F. Palomares and T. M. Caro, Interspecific killing among mammalian carnivores, The American Naturalist, 153 (1999), 492-508.
doi: 10.1086/303189. |
[21] |
D. Ryan, Fitness Dependent Dispersal in Intraguild Predation Communities, Ph.D thesis, University of Miami, 2011. |
[22] |
F. Sergio, L. Marchesi and P. Pedrini, Spatial refugia and the coexistence of a diurnal raptor with its intraguild owl predator, Journal of Animal Ecology, 72 (2003), 232-245.
doi: 10.1046/j.1365-2656.2003.00693.x. |
[23] |
F. Sergio, L. Marchesi, P. Pedrini and V. Penteriani, Coexistence of a generalist owl with its intraguild predator: distance-sensitive or habitat-mediated avoidance?, Animal Behaviour, 74 (2007), 1607-1616.
doi: 10.1016/j.anbehav.2006.10.022. |
[24] |
R. Skeel and M. Berzins, A method for the spatial descretization of parabolic equations in one space variable, SIAM Journal on Scientific and Statistical Computing, 11 (1990), 1-32.
doi: 10.1137/0911001. |
[25] |
R. Temam, Infinite Dimensional Dynamical Systems, Springer-Verlag, Berlin, 1997.
doi: 10.1007/978-1-4612-0645-3. |
[26] |
C. M. Thompson and E. M. Gese, Food webs and intraguild predation: Community interactions of a native mesocarnivore, Ecology, 88 (2007), 334-346. |
show all references
References:
[1] |
H. Amann, Dynamic theory of quasilinear parabolic equaitons I: Abstract evolution equaitons, Nonlinear Analysis: Theory, Methods & Applications, 12 (1988), 895-919.
doi: 10.1016/0362-546X(88)90073-9. |
[2] |
H. Amann, Dynamic theory of quasilinear parabolic systems III: Global existence, Mathematische Zeitschrift, 202 (1989), 219-250.
doi: 10.1007/BF01215256. |
[3] |
H. Amann, Dynamic theory of quasilinear parabolic systems II: reaction-diffusion systems, Differential and Integral Equations, 3 (1990), 13-75. |
[4] |
M. Arim and P. A. Marquet, Intraguild predation: A widespread interaction related to species biology, Ecology Letters, 7 (2004), 557-564.
doi: 10.1111/j.1461-0248.2004.00613.x. |
[5] |
P. Amarasekare, Productivity, dispersal and the coexistence of intraguild predators and prey, Journal of Theoretical Biology, 243 (2006), 121-133.
doi: 10.1016/j.jtbi.2006.06.007. |
[6] |
P. Amarasekare, Spatial dynamics of communities with intraguild predation: The role of dispersal strategies, The American Naturalist, 170 (2007), 819-831.
doi: 10.1086/522837. |
[7] |
J. E. Billotti and J. P. LaSalle, Dissipative periodic processes, Bulletin of the American Mathematical Society, 77 (1971), 1082-1088.
doi: 10.1090/S0002-9904-1971-12879-3. |
[8] |
R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations, Wiley, Chichester, UK, 2003.
doi: 10.1002/0470871296. |
[9] |
S. M. Durant, Living with the enemy: Avoidance of hyenas and lions by cheetahs in the Serengeti, Behavioral Ecology, 11 (2000), 624-632.
doi: 10.1093/beheco/11.6.624. |
[10] |
J. K. Hale and P. Waltman, Persistence in infinite-dimensional systems, SIAM Journal on Mathematical Analysis, 20 (1989), 388-395.
doi: 10.1137/0520025. |
[11] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983.
doi: 10.1007/978-3-642-61798-0. |
[12] |
R. D. Holt and G. A. Polis, A theoretical framework for intraguild predation, The American Naturalist, 149 (1997), 745-764.
doi: 10.1086/286018. |
[13] |
T. Kimbrell, R. D. Holt and P. Lundberg, The influence of vigilance on intraguild predation, Journal of Theoretical Biology, 249 (2007), 218-234.
doi: 10.1016/j.jtbi.2007.07.031. |
[14] |
D. Le, Cross diffusion systems on n spatial dimensional domains, Indiana University Mathematics Journal, 51 (2002), 625-643.
doi: 10.1512/iumj.2002.51.2198. |
[15] |
G. Lieberman, Second Order Parabolic Equations, World Scientific, Singapore, 1996.
doi: 10.1142/3302. |
[16] |
E. Lucas, D. Coderre and J. Brodeur, Selection of molting and pupation sites by Coleomegilla maculata (Coleoptera: Coccinellidae): avoidance of intraguild predation, Environmental Entomology, 29 (2000), 454-459.
doi: 10.1603/0046-225X-29.3.454. |
[17] |
L. Nirenberg, On elliptic partial differential equations, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 13 (1959), 115-162. |
[18] |
T. Okuyama and R. L. Ruyle, Analysis of adaptive foraging in an intraguild predation system, Web Ecology, 4 (2003), 1-6.
doi: 10.5194/we-4-1-2003. |
[19] |
F. Palomares and P. Ferreras, Spatial relationships between Iberian lynx and other carnivores in an area of southwestern Spain, Journal of Applied Ecology, 33 (1996), 5-13. |
[20] |
F. Palomares and T. M. Caro, Interspecific killing among mammalian carnivores, The American Naturalist, 153 (1999), 492-508.
doi: 10.1086/303189. |
[21] |
D. Ryan, Fitness Dependent Dispersal in Intraguild Predation Communities, Ph.D thesis, University of Miami, 2011. |
[22] |
F. Sergio, L. Marchesi and P. Pedrini, Spatial refugia and the coexistence of a diurnal raptor with its intraguild owl predator, Journal of Animal Ecology, 72 (2003), 232-245.
doi: 10.1046/j.1365-2656.2003.00693.x. |
[23] |
F. Sergio, L. Marchesi, P. Pedrini and V. Penteriani, Coexistence of a generalist owl with its intraguild predator: distance-sensitive or habitat-mediated avoidance?, Animal Behaviour, 74 (2007), 1607-1616.
doi: 10.1016/j.anbehav.2006.10.022. |
[24] |
R. Skeel and M. Berzins, A method for the spatial descretization of parabolic equations in one space variable, SIAM Journal on Scientific and Statistical Computing, 11 (1990), 1-32.
doi: 10.1137/0911001. |
[25] |
R. Temam, Infinite Dimensional Dynamical Systems, Springer-Verlag, Berlin, 1997.
doi: 10.1007/978-1-4612-0645-3. |
[26] |
C. M. Thompson and E. M. Gese, Food webs and intraguild predation: Community interactions of a native mesocarnivore, Ecology, 88 (2007), 334-346. |
[1] |
Robert Stephen Cantrell, Xinru Cao, King-Yeung Lam, Tian Xiang. A PDE model of intraguild predation with cross-diffusion. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3653-3661. doi: 10.3934/dcdsb.2017145 |
[2] |
Yuan Lou, Wei-Ming Ni, Yaping Wu. On the global existence of a cross-diffusion system. Discrete and Continuous Dynamical Systems, 1998, 4 (2) : 193-203. doi: 10.3934/dcds.1998.4.193 |
[3] |
Yi Li, Chunshan Zhao. Global existence of solutions to a cross-diffusion system in higher dimensional domains. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 185-192. doi: 10.3934/dcds.2005.12.185 |
[4] |
Esther S. Daus, Josipa-Pina Milišić, Nicola Zamponi. Global existence for a two-phase flow model with cross-diffusion. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 957-979. doi: 10.3934/dcdsb.2019198 |
[5] |
Hua Nie, Sze-Bi Hsu, Feng-Bin Wang. Global dynamics of a reaction-diffusion system with intraguild predation and internal storage. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 877-901. doi: 10.3934/dcdsb.2019194 |
[6] |
Y. S. Choi, Roger Lui, Yoshio Yamada. Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion. Discrete and Continuous Dynamical Systems, 2004, 10 (3) : 719-730. doi: 10.3934/dcds.2004.10.719 |
[7] |
Y. S. Choi, Roger Lui, Yoshio Yamada. Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with weak cross-diffusion. Discrete and Continuous Dynamical Systems, 2003, 9 (5) : 1193-1200. doi: 10.3934/dcds.2003.9.1193 |
[8] |
Yanxia Wu, Yaping Wu. Existence of traveling waves with transition layers for some degenerate cross-diffusion systems. Communications on Pure and Applied Analysis, 2012, 11 (3) : 911-934. doi: 10.3934/cpaa.2012.11.911 |
[9] |
Yaping Wu, Qian Xu. The existence and structure of large spiky steady states for S-K-T competition systems with cross-diffusion. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 367-385. doi: 10.3934/dcds.2011.29.367 |
[10] |
Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. Pattern formation in a cross-diffusion system. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1589-1607. doi: 10.3934/dcds.2015.35.1589 |
[11] |
Michael Winkler, Dariusz Wrzosek. Preface: Analysis of cross-diffusion systems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : i-i. doi: 10.3934/dcdss.20202i |
[12] |
Maxime Breden, Christian Kuehn, Cinzia Soresina. On the influence of cross-diffusion in pattern formation. Journal of Computational Dynamics, 2021, 8 (2) : 213-240. doi: 10.3934/jcd.2021010 |
[13] |
Yaru Hu, Jinfeng Wang. Dynamics of an SIRS epidemic model with cross-diffusion. Communications on Pure and Applied Analysis, 2022, 21 (1) : 315-336. doi: 10.3934/cpaa.2021179 |
[14] |
Kazuo Yamazaki, Xueying Wang. Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model. Mathematical Biosciences & Engineering, 2017, 14 (2) : 559-579. doi: 10.3934/mbe.2017033 |
[15] |
Hideki Murakawa. A relation between cross-diffusion and reaction-diffusion. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 147-158. doi: 10.3934/dcdss.2012.5.147 |
[16] |
Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228 |
[17] |
Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. On a limiting system in the Lotka--Volterra competition with cross-diffusion. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 435-458. doi: 10.3934/dcds.2004.10.435 |
[18] |
Kousuke Kuto, Yoshio Yamada. Coexistence states for a prey-predator model with cross-diffusion. Conference Publications, 2005, 2005 (Special) : 536-545. doi: 10.3934/proc.2005.2005.536 |
[19] |
Kousuke Kuto, Yoshio Yamada. On limit systems for some population models with cross-diffusion. Discrete and Continuous Dynamical Systems - B, 2012, 17 (8) : 2745-2769. doi: 10.3934/dcdsb.2012.17.2745 |
[20] |
F. Berezovskaya, Erika Camacho, Stephen Wirkus, Georgy Karev. "Traveling wave'' solutions of Fitzhugh model with cross-diffusion. Mathematical Biosciences & Engineering, 2008, 5 (2) : 239-260. doi: 10.3934/mbe.2008.5.239 |
2021 Impact Factor: 1.588
Tools
Metrics
Other articles
by authors
[Back to Top]