January  2015, 35(1): 173-204. doi: 10.3934/dcds.2015.35.173

Small-divisor equation with large-variable coefficient and periodic solutions of DNLS equations

1. 

School of Science, Shanghai Second Polytechnic University, Shanghai 201209, China

Received  January 2014 Revised  April 2014 Published  August 2014

In this paper, we establish an estimate for the solutions of a small-divisor equation with large variable coefficient. Then by formulating an infinite-dimensional KAM theorem which allows for multiple normal frequencies and unbounded perturbations, we prove that there are many periodic solutions for the derivative nonlinear Schrödinger equations subject to small Hamiltonian perturbations.
Citation: Meina Gao. Small-divisor equation with large-variable coefficient and periodic solutions of DNLS equations. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 173-204. doi: 10.3934/dcds.2015.35.173
References:
[1]

P. Baldi, Periodic solutions of fully nonlinear autonomous equations of Benjamin-Ono type, Ann. Inst. H. Poincare (C) Anal. Non Linaire, 30 (2013), 33-77. doi: 10.1016/j.anihpc.2012.06.001.

[2]

P. Baldi, M. Berti and R. Montalto, KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation, Math. Ann., 359 (2014), 471-536. doi: 10.1007/s00208-013-1001-7.

[3]

D. Bambusi and S. Graffi, Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods, Comm. Math. Phys., 219 (2001), 465-480. doi: 10.1007/s002200100426.

[4]

M. Berti, L. Biasco and M. Procesi, KAM theory for the Hamiltonian derivative wave equation, Ann. Sci. Ec. Norm. Super., 46 (2013), 301-373.

[5]

N. N. Bogolyubov, Yu. A. Mitropolskii and A. M. Samoilenko, Methods of Accelerated Convergence in Nonlinear Mechanics, Springer-Verlag, New York, 1976.

[6]

J. Bourgain, Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and application to nonlinear pde, Int. Math. Res. Notices, 11 (1994), 475-497. doi: 10.1155/S1073792894000516.

[7]

J. Bourgain, Quasi-periodic solutions of Hamiltonian perturbations for 2D linear Schrödinger equation, Ann. Math., 148 (1998), 363-439. doi: 10.2307/121001.

[8]

J. Bourgain, Harmoinc Analysis and Partial Differential Equations, University of Chicago Press, 1999.

[9]

L. Chierchia and J. You, KAM tori for 1D nonlinear wave equations with periodic boundary conditions, Commun. Math. Phys., 211 (2000), 497-525. doi: 10.1007/s002200050824.

[10]

W. Craig and C. E. Wayne, Newton's method and periodic solutions of nonlinear wave equation, Commun. Pure Appl. Math., 46 (1993), 1409-1498. doi: 10.1002/cpa.3160461102.

[11]

L. Du and X. Yuan, Invariant tori of nonlinear Schrödinger equations with a given potential, Dynamics of PDE, 3 (2006), 331-346.

[12]

L. H. Eliasson and S. B. Kuksin, KAM for the nonlinear Schrödinger equation, Ann. Math., 172 (2010), 371-435. doi: 10.4007/annals.2010.172.371.

[13]

M. Gao and J. Zhang, Small-divisor equation of higher order with large variable coefficient, Acta. Mathematica Sinica, English Series, 27 (2011), 2005-2032. doi: 10.1007/s10114-011-0064-1.

[14]

T. Kappeler and J. Pöschel, KdV&KAM, Springer-Verlag, Berlin, 2003. doi: 10.1007/978-3-662-08054-2.

[15]

T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin Heidelberg New York, 1980. doi: 10.1007/978-3-642-66282-9.

[16]

S. B. Kuksin, Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum, Funkt. Anal. Prilozh., 21 (1987), 22-37; English translation in Funct. Anal. Appl., 21 (1987), 192-205.

[17]

S. B. Kuksin, Perturbations of quasiperiodic solutions of infinite-dimensional Hamiltonian systems, Izv. Akad. Nauk SSSR Ser. Mat., 52 (1988), 41-63; English translation in Math. USSR Izv., 32 (1989), 39-62.

[18]

S. B. Kuksin, Nearly Integrable Infinite-Dimensional Hamiltonian Systems, Lecture Notes in Math., 1556, Springer-Verlag, New York, 1993.

[19]

S. B. Kuksin, Analysis of Hamiltonian PDEs, Oxford University Press, Oxford, 2000.

[20]

S. B. Kuksin and J. Pöschel, Invariant cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. of Math. (2), 143 (1996), 149-179. doi: 10.2307/2118656.

[21]

P. Lancaster, Theory of Matrices, Academic Press LTD, New York and London, 1969.

[22]

J. Liu and X. Yuan, Spectrum for quantum Duffing oscillator and small-divisor equation with large variable coefficient, Comm. Pure Appl. Math., 63 (2010), 1145-1172. doi: 10.1002/cpa.20314.

[23]

J. Liu and X. Yuan, A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations, Commun. Math. Phys., 307 (2011), 629-673. doi: 10.1007/s00220-011-1353-3.

[24]

J. Liu and X. Yuan, KAM for the derivative nonlinear Schrödinger equation with periodic boundary conditions, J. Differential Equations, 256 (2014), 1627-1652. doi: 10.1016/j.jde.2013.11.007.

[25]

C. E. Wayne, Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Commun. Math. Phys., 127 (1990), 479-528. doi: 10.1007/BF02104499.

[26]

J. Pöschel, A KAM-theorem for some nonlinear partial differential equations, Ann. Sc. Norm. Sup. Pisa., 23 (1996), 119-148.

[27]

J. Pöschel, Quasi-periodic solutions for a nonlinear wave equation, Comment. Math. Helv., 71 (1996), 269-296. doi: 10.1007/BF02566420.

[28]

J. You, Perturbations of lower dimensional tori for hamiltonian systems, J. Differential Equations, 152 (1999), 1-29. doi: 10.1006/jdeq.1998.3515.

[29]

X. Yuan, A KAM theorem with appllications to partial differential equations of higher dimension, Commun. Math. Phys., 275 (2007), 97-137. doi: 10.1007/s00220-007-0287-2.

[30]

J. Zhang, M. Gao and X. Yuan, KAM tori for reversible partial differential equations, Nonlinearity, 24 (2011), 1198-2118. doi: 10.1088/0951-7715/24/4/010.

[31]

W. P. Ziemer, Weakly Differentiable Functions, Graduate Texts in Math., 120, Springer-Verlag, Berlin Heidelberg New York, 1989. doi: 10.1007/978-1-4612-1015-3.

show all references

References:
[1]

P. Baldi, Periodic solutions of fully nonlinear autonomous equations of Benjamin-Ono type, Ann. Inst. H. Poincare (C) Anal. Non Linaire, 30 (2013), 33-77. doi: 10.1016/j.anihpc.2012.06.001.

[2]

P. Baldi, M. Berti and R. Montalto, KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation, Math. Ann., 359 (2014), 471-536. doi: 10.1007/s00208-013-1001-7.

[3]

D. Bambusi and S. Graffi, Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods, Comm. Math. Phys., 219 (2001), 465-480. doi: 10.1007/s002200100426.

[4]

M. Berti, L. Biasco and M. Procesi, KAM theory for the Hamiltonian derivative wave equation, Ann. Sci. Ec. Norm. Super., 46 (2013), 301-373.

[5]

N. N. Bogolyubov, Yu. A. Mitropolskii and A. M. Samoilenko, Methods of Accelerated Convergence in Nonlinear Mechanics, Springer-Verlag, New York, 1976.

[6]

J. Bourgain, Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and application to nonlinear pde, Int. Math. Res. Notices, 11 (1994), 475-497. doi: 10.1155/S1073792894000516.

[7]

J. Bourgain, Quasi-periodic solutions of Hamiltonian perturbations for 2D linear Schrödinger equation, Ann. Math., 148 (1998), 363-439. doi: 10.2307/121001.

[8]

J. Bourgain, Harmoinc Analysis and Partial Differential Equations, University of Chicago Press, 1999.

[9]

L. Chierchia and J. You, KAM tori for 1D nonlinear wave equations with periodic boundary conditions, Commun. Math. Phys., 211 (2000), 497-525. doi: 10.1007/s002200050824.

[10]

W. Craig and C. E. Wayne, Newton's method and periodic solutions of nonlinear wave equation, Commun. Pure Appl. Math., 46 (1993), 1409-1498. doi: 10.1002/cpa.3160461102.

[11]

L. Du and X. Yuan, Invariant tori of nonlinear Schrödinger equations with a given potential, Dynamics of PDE, 3 (2006), 331-346.

[12]

L. H. Eliasson and S. B. Kuksin, KAM for the nonlinear Schrödinger equation, Ann. Math., 172 (2010), 371-435. doi: 10.4007/annals.2010.172.371.

[13]

M. Gao and J. Zhang, Small-divisor equation of higher order with large variable coefficient, Acta. Mathematica Sinica, English Series, 27 (2011), 2005-2032. doi: 10.1007/s10114-011-0064-1.

[14]

T. Kappeler and J. Pöschel, KdV&KAM, Springer-Verlag, Berlin, 2003. doi: 10.1007/978-3-662-08054-2.

[15]

T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin Heidelberg New York, 1980. doi: 10.1007/978-3-642-66282-9.

[16]

S. B. Kuksin, Hamiltonian perturbations of infinite-dimensional linear systems with an imaginary spectrum, Funkt. Anal. Prilozh., 21 (1987), 22-37; English translation in Funct. Anal. Appl., 21 (1987), 192-205.

[17]

S. B. Kuksin, Perturbations of quasiperiodic solutions of infinite-dimensional Hamiltonian systems, Izv. Akad. Nauk SSSR Ser. Mat., 52 (1988), 41-63; English translation in Math. USSR Izv., 32 (1989), 39-62.

[18]

S. B. Kuksin, Nearly Integrable Infinite-Dimensional Hamiltonian Systems, Lecture Notes in Math., 1556, Springer-Verlag, New York, 1993.

[19]

S. B. Kuksin, Analysis of Hamiltonian PDEs, Oxford University Press, Oxford, 2000.

[20]

S. B. Kuksin and J. Pöschel, Invariant cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation, Ann. of Math. (2), 143 (1996), 149-179. doi: 10.2307/2118656.

[21]

P. Lancaster, Theory of Matrices, Academic Press LTD, New York and London, 1969.

[22]

J. Liu and X. Yuan, Spectrum for quantum Duffing oscillator and small-divisor equation with large variable coefficient, Comm. Pure Appl. Math., 63 (2010), 1145-1172. doi: 10.1002/cpa.20314.

[23]

J. Liu and X. Yuan, A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations, Commun. Math. Phys., 307 (2011), 629-673. doi: 10.1007/s00220-011-1353-3.

[24]

J. Liu and X. Yuan, KAM for the derivative nonlinear Schrödinger equation with periodic boundary conditions, J. Differential Equations, 256 (2014), 1627-1652. doi: 10.1016/j.jde.2013.11.007.

[25]

C. E. Wayne, Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory, Commun. Math. Phys., 127 (1990), 479-528. doi: 10.1007/BF02104499.

[26]

J. Pöschel, A KAM-theorem for some nonlinear partial differential equations, Ann. Sc. Norm. Sup. Pisa., 23 (1996), 119-148.

[27]

J. Pöschel, Quasi-periodic solutions for a nonlinear wave equation, Comment. Math. Helv., 71 (1996), 269-296. doi: 10.1007/BF02566420.

[28]

J. You, Perturbations of lower dimensional tori for hamiltonian systems, J. Differential Equations, 152 (1999), 1-29. doi: 10.1006/jdeq.1998.3515.

[29]

X. Yuan, A KAM theorem with appllications to partial differential equations of higher dimension, Commun. Math. Phys., 275 (2007), 97-137. doi: 10.1007/s00220-007-0287-2.

[30]

J. Zhang, M. Gao and X. Yuan, KAM tori for reversible partial differential equations, Nonlinearity, 24 (2011), 1198-2118. doi: 10.1088/0951-7715/24/4/010.

[31]

W. P. Ziemer, Weakly Differentiable Functions, Graduate Texts in Math., 120, Springer-Verlag, Berlin Heidelberg New York, 1989. doi: 10.1007/978-1-4612-1015-3.

[1]

Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete and Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109

[2]

Hongzi Cong, Lufang Mi, Yunfeng Shi, Yuan Wu. On the existence of full dimensional KAM torus for nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6599-6630. doi: 10.3934/dcds.2019287

[3]

Razvan Mosincat, Haewon Yoon. Unconditional uniqueness for the derivative nonlinear Schrödinger equation on the real line. Discrete and Continuous Dynamical Systems, 2020, 40 (1) : 47-80. doi: 10.3934/dcds.2020003

[4]

Meina Gao, Jianjun Liu. Quasi-periodic solutions for derivative nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 2101-2123. doi: 10.3934/dcds.2012.32.2101

[5]

Nakao Hayashi, Elena I. Kaikina, Pavel I. Naumkin. Large time behavior of solutions to the generalized derivative nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 1999, 5 (1) : 93-106. doi: 10.3934/dcds.1999.5.93

[6]

Hiroyuki Hirayama, Mamoru Okamoto. Random data Cauchy problem for the nonlinear Schrödinger equation with derivative nonlinearity. Discrete and Continuous Dynamical Systems, 2016, 36 (12) : 6943-6974. doi: 10.3934/dcds.2016102

[7]

Kazumasa Fujiwara, Tohru Ozawa. On the lifespan of strong solutions to the periodic derivative nonlinear Schrödinger equation. Evolution Equations and Control Theory, 2018, 7 (2) : 275-280. doi: 10.3934/eect.2018013

[8]

Nakao Hayashi, Pavel I. Naumkin. Asymptotic behavior in time of solutions to the derivative nonlinear Schrödinger equation revisited. Discrete and Continuous Dynamical Systems, 1997, 3 (3) : 383-400. doi: 10.3934/dcds.1997.3.383

[9]

Pavel I. Naumkin, Isahi Sánchez-Suárez. Asymptotics for the higher-order derivative nonlinear Schrödinger equation. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1447-1478. doi: 10.3934/cpaa.2021028

[10]

Phan Van Tin. On the Cauchy problem for a derivative nonlinear Schrödinger equation with nonvanishing boundary conditions. Evolution Equations and Control Theory, 2022, 11 (3) : 837-867. doi: 10.3934/eect.2021028

[11]

Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure and Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104

[12]

Guanghua Shi, Dongfeng Yan. KAM tori for quintic nonlinear schrödinger equations with given potential. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2421-2439. doi: 10.3934/dcds.2020120

[13]

Zhaowei Lou, Jianguo Si, Shimin Wang. Invariant tori for the derivative nonlinear Schrödinger equation with nonlinear term depending on spatial variable. Discrete and Continuous Dynamical Systems, 2022  doi: 10.3934/dcds.2022064

[14]

Nakao Hayashi, Pavel Naumkin. On the reduction of the modified Benjamin-Ono equation to the cubic derivative nonlinear Schrödinger equation. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 237-255. doi: 10.3934/dcds.2002.8.237

[15]

Zihua Guo, Yifei Wu. Global well-posedness for the derivative nonlinear Schrödinger equation in $H^{\frac 12} (\mathbb{R} )$. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 257-264. doi: 10.3934/dcds.2017010

[16]

Minoru Murai, Kunimochi Sakamoto, Shoji Yotsutani. Representation formula for traveling waves to a derivative nonlinear Schrödinger equation with the periodic boundary condition. Conference Publications, 2015, 2015 (special) : 878-900. doi: 10.3934/proc.2015.0878

[17]

Kelin Li, Huafei Di. On the well-posedness and stability for the fourth-order Schrödinger equation with nonlinear derivative term. Discrete and Continuous Dynamical Systems - S, 2021, 14 (12) : 4293-4320. doi: 10.3934/dcdss.2021122

[18]

Fengshuang Gao, Yuxia Guo. Multiple solutions for a nonlinear Schrödinger systems. Communications on Pure and Applied Analysis, 2020, 19 (2) : 1181-1204. doi: 10.3934/cpaa.2020055

[19]

Claudianor O. Alves, Chao Ji. Multiple positive solutions for a Schrödinger logarithmic equation. Discrete and Continuous Dynamical Systems, 2020, 40 (5) : 2671-2685. doi: 10.3934/dcds.2020145

[20]

Hideo Takaoka. Energy transfer model for the derivative nonlinear Schrödinger equations on the torus. Discrete and Continuous Dynamical Systems, 2017, 37 (11) : 5819-5841. doi: 10.3934/dcds.2017253

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (78)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]