April  2015, 35(4): 1743-1765. doi: 10.3934/dcds.2015.35.1743

Traveling waves of a mutualistic model of mistletoes and birds

1. 

Department of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China

2. 

Department of Mathematics and Department of Zoology and Physiology, University of Wyoming, Laramie, WY, 82071

3. 

Department of Mathematics, College of William and Mary, Williamsburg, Virginia, 23187-8795

4. 

Department of Zoology and Physiology, University of Wyoming, Laramie, WY, 82071, United States

Received  July 2013 Revised  September 2014 Published  November 2014

The existences of an asymptotic spreading speed and traveling wave solutions for a diffusive model which describes the interaction of mistletoe and bird populations with nonlocal diffusion and delay effect are proved by using monotone semiflow theory. The effects of different dispersal kernels on the asymptotic spreading speeds are investigated through concrete examples and simulations.
Citation: Chuncheng Wang, Rongsong Liu, Junping Shi, Carlos Martinez del Rio. Traveling waves of a mutualistic model of mistletoes and birds. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1743-1765. doi: 10.3934/dcds.2015.35.1743
References:
[1]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics,, Adv. in Math., 30 (1978), 33.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[2]

J. E. Aukema, Vectors, viscin, and viscaceae: Mistletoes as parasites, mutualists, and resources,, Front. Ecol. Environ., 1 (2003), 212.   Google Scholar

[3]

J. E. Aukema and C. M. del Rio, Where does a fruit-eating bird deposit mistletoe seeds? seed deposition patterns and an experiment,, Ecology, 83 (2002), 3489.  doi: 10.2307/3072097.  Google Scholar

[4]

J. Fang, J. Wei and X. Zhao, Spatial dynamics of a nonlocal and time-delayed reaction diffusion system,, J. Differential Equations, 245 (2008), 2749.  doi: 10.1016/j.jde.2008.09.001.  Google Scholar

[5]

J. Fang and X. Zhao, Monotone wavefronts for partially degenerate reaction-diffusion systems,, J. Dynam. Differential Equations, 21 (2009), 663.  doi: 10.1007/s10884-009-9152-7.  Google Scholar

[6]

J. Fang and X. Zhao, Traveling waves for monotone semiflows with weak compactness,, SIAM J. Math. Anal., ().   Google Scholar

[7]

C. Gosper, C. D. Stansbury and G. Vivian-Smith, Seed dispersal of fleshy-fruited invasive plants by birds: Contributing factors and management options,, Diversity and Distributions, 11 (2005), 549.  doi: 10.1111/j.1366-9516.2005.00195.x.  Google Scholar

[8]

B. Li, Traveling wave solutions in partially degenerate cooperative reaction-diffusion systems,, J. Differential Equations, 252 (2012), 4842.  doi: 10.1016/j.jde.2012.01.018.  Google Scholar

[9]

B. Li, H. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems,, Math. Biosci., 196 (2005), 82.  doi: 10.1016/j.mbs.2005.03.008.  Google Scholar

[10]

B. Li and L. Zhang, Travelling wave solutions in delayed cooperative systems,, Nonlinearity, 24 (2011), 1759.  doi: 10.1088/0951-7715/24/6/004.  Google Scholar

[11]

X. Liang and X. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,, Commun. Pure Appl. Math., 60 (2007), 1.  doi: 10.1002/cpa.20154.  Google Scholar

[12]

X. Liang and X. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems,, J. Funct. Anal., 259 (2010), 857.  doi: 10.1016/j.jfa.2010.04.018.  Google Scholar

[13]

G. Lin, W. Li and S. Ruan, Monostable wavefronts in cooperative Lotka-Volterra systems with nonlocal delays,, Discrete Contin. Dyn. Syst., 31 (2011), 1.  doi: 10.3934/dcds.2011.31.1.  Google Scholar

[14]

R. Liu, C. M. del Rio and J. Wu, Spatiotemporal variation of mistletoes: A dynamic modeling approach,, Bull. Math. Biol., 73 (2011), 1794.  doi: 10.1007/s11538-010-9592-6.  Google Scholar

[15]

N. Reid, Coevolution of mistletoes and frugivorous birds,, Australian Journal of Ecology, 16 (1991), 457.  doi: 10.1111/j.1442-9993.1991.tb01075.x.  Google Scholar

[16]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, vol. 41 of Mathematical Surveys and Monographs,, Amer. Math. Soc., (1995).   Google Scholar

[17]

C. Wang, R. Liu, J. Shi and C. M. del Rio, Spatiotemporal mutualistic model of mistletoes and birds,, J. Math. Biol., 68 (2014), 1479.  doi: 10.1007/s00285-013-0664-8.  Google Scholar

[18]

Z. Wang, W. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay,, J. Differential Equations, 238 (2007), 153.  doi: 10.1016/j.jde.2007.03.025.  Google Scholar

[19]

Z. Wang, W. Li and S. Ruan, Traveling fronts in monostable equations with nonlocal delayed effects,, J. Dynam. Differential Equations, 20 (2008), 573.  doi: 10.1007/s10884-008-9103-8.  Google Scholar

[20]

H. F. Weinberger, M. A. Lewis and B. Li, Anomalous spreading speeds of cooperative recursion systems,, J. Math. Biol., 55 (2007), 207.  doi: 10.1007/s00285-007-0078-6.  Google Scholar

[21]

P. Weng and X. Zhao, Spreading speed and traveling waves for a multi-type {SIS} epidemic model,, J. Differential Equations, 229 (2006), 270.  doi: 10.1016/j.jde.2006.01.020.  Google Scholar

[22]

S. Wu, Y. Sun and S. Liu, Traveling fronts and entire solutions in partially degenerate reaction-diffusion systems with monostable nonlinearity,, Discrete Contin. Dyn. Syst., 33 (2013), 921.  doi: 10.3934/dcds.2013.33.921.  Google Scholar

[23]

X. Zhao, Dynamical System in Population Biology,, Springer, (2003).  doi: 10.1007/978-0-387-21761-1.  Google Scholar

show all references

References:
[1]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics,, Adv. in Math., 30 (1978), 33.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[2]

J. E. Aukema, Vectors, viscin, and viscaceae: Mistletoes as parasites, mutualists, and resources,, Front. Ecol. Environ., 1 (2003), 212.   Google Scholar

[3]

J. E. Aukema and C. M. del Rio, Where does a fruit-eating bird deposit mistletoe seeds? seed deposition patterns and an experiment,, Ecology, 83 (2002), 3489.  doi: 10.2307/3072097.  Google Scholar

[4]

J. Fang, J. Wei and X. Zhao, Spatial dynamics of a nonlocal and time-delayed reaction diffusion system,, J. Differential Equations, 245 (2008), 2749.  doi: 10.1016/j.jde.2008.09.001.  Google Scholar

[5]

J. Fang and X. Zhao, Monotone wavefronts for partially degenerate reaction-diffusion systems,, J. Dynam. Differential Equations, 21 (2009), 663.  doi: 10.1007/s10884-009-9152-7.  Google Scholar

[6]

J. Fang and X. Zhao, Traveling waves for monotone semiflows with weak compactness,, SIAM J. Math. Anal., ().   Google Scholar

[7]

C. Gosper, C. D. Stansbury and G. Vivian-Smith, Seed dispersal of fleshy-fruited invasive plants by birds: Contributing factors and management options,, Diversity and Distributions, 11 (2005), 549.  doi: 10.1111/j.1366-9516.2005.00195.x.  Google Scholar

[8]

B. Li, Traveling wave solutions in partially degenerate cooperative reaction-diffusion systems,, J. Differential Equations, 252 (2012), 4842.  doi: 10.1016/j.jde.2012.01.018.  Google Scholar

[9]

B. Li, H. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems,, Math. Biosci., 196 (2005), 82.  doi: 10.1016/j.mbs.2005.03.008.  Google Scholar

[10]

B. Li and L. Zhang, Travelling wave solutions in delayed cooperative systems,, Nonlinearity, 24 (2011), 1759.  doi: 10.1088/0951-7715/24/6/004.  Google Scholar

[11]

X. Liang and X. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,, Commun. Pure Appl. Math., 60 (2007), 1.  doi: 10.1002/cpa.20154.  Google Scholar

[12]

X. Liang and X. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems,, J. Funct. Anal., 259 (2010), 857.  doi: 10.1016/j.jfa.2010.04.018.  Google Scholar

[13]

G. Lin, W. Li and S. Ruan, Monostable wavefronts in cooperative Lotka-Volterra systems with nonlocal delays,, Discrete Contin. Dyn. Syst., 31 (2011), 1.  doi: 10.3934/dcds.2011.31.1.  Google Scholar

[14]

R. Liu, C. M. del Rio and J. Wu, Spatiotemporal variation of mistletoes: A dynamic modeling approach,, Bull. Math. Biol., 73 (2011), 1794.  doi: 10.1007/s11538-010-9592-6.  Google Scholar

[15]

N. Reid, Coevolution of mistletoes and frugivorous birds,, Australian Journal of Ecology, 16 (1991), 457.  doi: 10.1111/j.1442-9993.1991.tb01075.x.  Google Scholar

[16]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, vol. 41 of Mathematical Surveys and Monographs,, Amer. Math. Soc., (1995).   Google Scholar

[17]

C. Wang, R. Liu, J. Shi and C. M. del Rio, Spatiotemporal mutualistic model of mistletoes and birds,, J. Math. Biol., 68 (2014), 1479.  doi: 10.1007/s00285-013-0664-8.  Google Scholar

[18]

Z. Wang, W. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay,, J. Differential Equations, 238 (2007), 153.  doi: 10.1016/j.jde.2007.03.025.  Google Scholar

[19]

Z. Wang, W. Li and S. Ruan, Traveling fronts in monostable equations with nonlocal delayed effects,, J. Dynam. Differential Equations, 20 (2008), 573.  doi: 10.1007/s10884-008-9103-8.  Google Scholar

[20]

H. F. Weinberger, M. A. Lewis and B. Li, Anomalous spreading speeds of cooperative recursion systems,, J. Math. Biol., 55 (2007), 207.  doi: 10.1007/s00285-007-0078-6.  Google Scholar

[21]

P. Weng and X. Zhao, Spreading speed and traveling waves for a multi-type {SIS} epidemic model,, J. Differential Equations, 229 (2006), 270.  doi: 10.1016/j.jde.2006.01.020.  Google Scholar

[22]

S. Wu, Y. Sun and S. Liu, Traveling fronts and entire solutions in partially degenerate reaction-diffusion systems with monostable nonlinearity,, Discrete Contin. Dyn. Syst., 33 (2013), 921.  doi: 10.3934/dcds.2013.33.921.  Google Scholar

[23]

X. Zhao, Dynamical System in Population Biology,, Springer, (2003).  doi: 10.1007/978-0-387-21761-1.  Google Scholar

[1]

Huimin Liang, Peixuan Weng, Yanling Tian. Threshold asymptotic behaviors for a delayed nonlocal reaction-diffusion model of mistletoes and birds in a 2D strip. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1471-1495. doi: 10.3934/cpaa.2016.15.1471

[2]

Huimin Liang, Peixuan Weng, Yanling Tian. Bility and traveling wavefronts for a convolution model of mistletoes and birds with nonlocal diffusion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2207-2231. doi: 10.3934/dcdsb.2017093

[3]

Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057

[4]

Manjun Ma, Xiao-Qiang Zhao. Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 591-606. doi: 10.3934/dcdsb.2016.21.591

[5]

Bingtuan Li, William F. Fagan, Garrett Otto, Chunwei Wang. Spreading speeds and traveling wave solutions in a competitive reaction-diffusion model for species persistence in a stream. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3267-3281. doi: 10.3934/dcdsb.2014.19.3267

[6]

Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126

[7]

Joaquin Riviera, Yi Li. Existence of traveling wave solutions for a nonlocal reaction-diffusion model of influenza a drift. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 157-174. doi: 10.3934/dcdsb.2010.13.157

[8]

Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057

[9]

Dashun Xu, Xiao-Qiang Zhao. Asymptotic speed of spread and traveling waves for a nonlocal epidemic model. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 1043-1056. doi: 10.3934/dcdsb.2005.5.1043

[10]

Keng Deng. On a nonlocal reaction-diffusion population model. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 65-73. doi: 10.3934/dcdsb.2008.9.65

[11]

Kota Ikeda, Masayasu Mimura. Traveling wave solutions of a 3-component reaction-diffusion model in smoldering combustion. Communications on Pure & Applied Analysis, 2012, 11 (1) : 275-305. doi: 10.3934/cpaa.2012.11.275

[12]

Jiamin Cao, Peixuan Weng. Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1405-1426. doi: 10.3934/cpaa.2017067

[13]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[14]

Cheng-Hsiung Hsu, Jian-Jhong Lin. Stability analysis of traveling wave solutions for lattice reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2020001

[15]

Tianran Zhang. Traveling waves for a reaction-diffusion model with a cyclic structure. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2020006

[16]

Jia-Feng Cao, Wan-Tong Li, Meng Zhao. On a free boundary problem for a nonlocal reaction-diffusion model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4117-4139. doi: 10.3934/dcdsb.2018128

[17]

Hans F. Weinberger, Kohkichi Kawasaki, Nanako Shigesada. Spreading speeds for a partially cooperative 2-species reaction-diffusion model. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 1087-1098. doi: 10.3934/dcds.2009.23.1087

[18]

Linda J. S. Allen, B. M. Bolker, Yuan Lou, A. L. Nevai. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 1-20. doi: 10.3934/dcds.2008.21.1

[19]

Keng Deng, Yixiang Wu. Asymptotic behavior for a reaction-diffusion population model with delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 385-395. doi: 10.3934/dcdsb.2015.20.385

[20]

Keng Deng. Asymptotic behavior of an SIR reaction-diffusion model with a linear source. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 5945-5957. doi: 10.3934/dcdsb.2019114

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (19)
  • HTML views (0)
  • Cited by (3)

[Back to Top]