April  2015, 35(4): 1743-1765. doi: 10.3934/dcds.2015.35.1743

Traveling waves of a mutualistic model of mistletoes and birds

1. 

Department of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China

2. 

Department of Mathematics and Department of Zoology and Physiology, University of Wyoming, Laramie, WY, 82071

3. 

Department of Mathematics, College of William and Mary, Williamsburg, Virginia, 23187-8795

4. 

Department of Zoology and Physiology, University of Wyoming, Laramie, WY, 82071, United States

Received  July 2013 Revised  September 2014 Published  November 2014

The existences of an asymptotic spreading speed and traveling wave solutions for a diffusive model which describes the interaction of mistletoe and bird populations with nonlocal diffusion and delay effect are proved by using monotone semiflow theory. The effects of different dispersal kernels on the asymptotic spreading speeds are investigated through concrete examples and simulations.
Citation: Chuncheng Wang, Rongsong Liu, Junping Shi, Carlos Martinez del Rio. Traveling waves of a mutualistic model of mistletoes and birds. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1743-1765. doi: 10.3934/dcds.2015.35.1743
References:
[1]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics,, Adv. in Math., 30 (1978), 33. doi: 10.1016/0001-8708(78)90130-5.

[2]

J. E. Aukema, Vectors, viscin, and viscaceae: Mistletoes as parasites, mutualists, and resources,, Front. Ecol. Environ., 1 (2003), 212.

[3]

J. E. Aukema and C. M. del Rio, Where does a fruit-eating bird deposit mistletoe seeds? seed deposition patterns and an experiment,, Ecology, 83 (2002), 3489. doi: 10.2307/3072097.

[4]

J. Fang, J. Wei and X. Zhao, Spatial dynamics of a nonlocal and time-delayed reaction diffusion system,, J. Differential Equations, 245 (2008), 2749. doi: 10.1016/j.jde.2008.09.001.

[5]

J. Fang and X. Zhao, Monotone wavefronts for partially degenerate reaction-diffusion systems,, J. Dynam. Differential Equations, 21 (2009), 663. doi: 10.1007/s10884-009-9152-7.

[6]

J. Fang and X. Zhao, Traveling waves for monotone semiflows with weak compactness,, SIAM J. Math. Anal., ().

[7]

C. Gosper, C. D. Stansbury and G. Vivian-Smith, Seed dispersal of fleshy-fruited invasive plants by birds: Contributing factors and management options,, Diversity and Distributions, 11 (2005), 549. doi: 10.1111/j.1366-9516.2005.00195.x.

[8]

B. Li, Traveling wave solutions in partially degenerate cooperative reaction-diffusion systems,, J. Differential Equations, 252 (2012), 4842. doi: 10.1016/j.jde.2012.01.018.

[9]

B. Li, H. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems,, Math. Biosci., 196 (2005), 82. doi: 10.1016/j.mbs.2005.03.008.

[10]

B. Li and L. Zhang, Travelling wave solutions in delayed cooperative systems,, Nonlinearity, 24 (2011), 1759. doi: 10.1088/0951-7715/24/6/004.

[11]

X. Liang and X. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,, Commun. Pure Appl. Math., 60 (2007), 1. doi: 10.1002/cpa.20154.

[12]

X. Liang and X. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems,, J. Funct. Anal., 259 (2010), 857. doi: 10.1016/j.jfa.2010.04.018.

[13]

G. Lin, W. Li and S. Ruan, Monostable wavefronts in cooperative Lotka-Volterra systems with nonlocal delays,, Discrete Contin. Dyn. Syst., 31 (2011), 1. doi: 10.3934/dcds.2011.31.1.

[14]

R. Liu, C. M. del Rio and J. Wu, Spatiotemporal variation of mistletoes: A dynamic modeling approach,, Bull. Math. Biol., 73 (2011), 1794. doi: 10.1007/s11538-010-9592-6.

[15]

N. Reid, Coevolution of mistletoes and frugivorous birds,, Australian Journal of Ecology, 16 (1991), 457. doi: 10.1111/j.1442-9993.1991.tb01075.x.

[16]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, vol. 41 of Mathematical Surveys and Monographs,, Amer. Math. Soc., (1995).

[17]

C. Wang, R. Liu, J. Shi and C. M. del Rio, Spatiotemporal mutualistic model of mistletoes and birds,, J. Math. Biol., 68 (2014), 1479. doi: 10.1007/s00285-013-0664-8.

[18]

Z. Wang, W. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay,, J. Differential Equations, 238 (2007), 153. doi: 10.1016/j.jde.2007.03.025.

[19]

Z. Wang, W. Li and S. Ruan, Traveling fronts in monostable equations with nonlocal delayed effects,, J. Dynam. Differential Equations, 20 (2008), 573. doi: 10.1007/s10884-008-9103-8.

[20]

H. F. Weinberger, M. A. Lewis and B. Li, Anomalous spreading speeds of cooperative recursion systems,, J. Math. Biol., 55 (2007), 207. doi: 10.1007/s00285-007-0078-6.

[21]

P. Weng and X. Zhao, Spreading speed and traveling waves for a multi-type {SIS} epidemic model,, J. Differential Equations, 229 (2006), 270. doi: 10.1016/j.jde.2006.01.020.

[22]

S. Wu, Y. Sun and S. Liu, Traveling fronts and entire solutions in partially degenerate reaction-diffusion systems with monostable nonlinearity,, Discrete Contin. Dyn. Syst., 33 (2013), 921. doi: 10.3934/dcds.2013.33.921.

[23]

X. Zhao, Dynamical System in Population Biology,, Springer, (2003). doi: 10.1007/978-0-387-21761-1.

show all references

References:
[1]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics,, Adv. in Math., 30 (1978), 33. doi: 10.1016/0001-8708(78)90130-5.

[2]

J. E. Aukema, Vectors, viscin, and viscaceae: Mistletoes as parasites, mutualists, and resources,, Front. Ecol. Environ., 1 (2003), 212.

[3]

J. E. Aukema and C. M. del Rio, Where does a fruit-eating bird deposit mistletoe seeds? seed deposition patterns and an experiment,, Ecology, 83 (2002), 3489. doi: 10.2307/3072097.

[4]

J. Fang, J. Wei and X. Zhao, Spatial dynamics of a nonlocal and time-delayed reaction diffusion system,, J. Differential Equations, 245 (2008), 2749. doi: 10.1016/j.jde.2008.09.001.

[5]

J. Fang and X. Zhao, Monotone wavefronts for partially degenerate reaction-diffusion systems,, J. Dynam. Differential Equations, 21 (2009), 663. doi: 10.1007/s10884-009-9152-7.

[6]

J. Fang and X. Zhao, Traveling waves for monotone semiflows with weak compactness,, SIAM J. Math. Anal., ().

[7]

C. Gosper, C. D. Stansbury and G. Vivian-Smith, Seed dispersal of fleshy-fruited invasive plants by birds: Contributing factors and management options,, Diversity and Distributions, 11 (2005), 549. doi: 10.1111/j.1366-9516.2005.00195.x.

[8]

B. Li, Traveling wave solutions in partially degenerate cooperative reaction-diffusion systems,, J. Differential Equations, 252 (2012), 4842. doi: 10.1016/j.jde.2012.01.018.

[9]

B. Li, H. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems,, Math. Biosci., 196 (2005), 82. doi: 10.1016/j.mbs.2005.03.008.

[10]

B. Li and L. Zhang, Travelling wave solutions in delayed cooperative systems,, Nonlinearity, 24 (2011), 1759. doi: 10.1088/0951-7715/24/6/004.

[11]

X. Liang and X. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,, Commun. Pure Appl. Math., 60 (2007), 1. doi: 10.1002/cpa.20154.

[12]

X. Liang and X. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems,, J. Funct. Anal., 259 (2010), 857. doi: 10.1016/j.jfa.2010.04.018.

[13]

G. Lin, W. Li and S. Ruan, Monostable wavefronts in cooperative Lotka-Volterra systems with nonlocal delays,, Discrete Contin. Dyn. Syst., 31 (2011), 1. doi: 10.3934/dcds.2011.31.1.

[14]

R. Liu, C. M. del Rio and J. Wu, Spatiotemporal variation of mistletoes: A dynamic modeling approach,, Bull. Math. Biol., 73 (2011), 1794. doi: 10.1007/s11538-010-9592-6.

[15]

N. Reid, Coevolution of mistletoes and frugivorous birds,, Australian Journal of Ecology, 16 (1991), 457. doi: 10.1111/j.1442-9993.1991.tb01075.x.

[16]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, vol. 41 of Mathematical Surveys and Monographs,, Amer. Math. Soc., (1995).

[17]

C. Wang, R. Liu, J. Shi and C. M. del Rio, Spatiotemporal mutualistic model of mistletoes and birds,, J. Math. Biol., 68 (2014), 1479. doi: 10.1007/s00285-013-0664-8.

[18]

Z. Wang, W. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay,, J. Differential Equations, 238 (2007), 153. doi: 10.1016/j.jde.2007.03.025.

[19]

Z. Wang, W. Li and S. Ruan, Traveling fronts in monostable equations with nonlocal delayed effects,, J. Dynam. Differential Equations, 20 (2008), 573. doi: 10.1007/s10884-008-9103-8.

[20]

H. F. Weinberger, M. A. Lewis and B. Li, Anomalous spreading speeds of cooperative recursion systems,, J. Math. Biol., 55 (2007), 207. doi: 10.1007/s00285-007-0078-6.

[21]

P. Weng and X. Zhao, Spreading speed and traveling waves for a multi-type {SIS} epidemic model,, J. Differential Equations, 229 (2006), 270. doi: 10.1016/j.jde.2006.01.020.

[22]

S. Wu, Y. Sun and S. Liu, Traveling fronts and entire solutions in partially degenerate reaction-diffusion systems with monostable nonlinearity,, Discrete Contin. Dyn. Syst., 33 (2013), 921. doi: 10.3934/dcds.2013.33.921.

[23]

X. Zhao, Dynamical System in Population Biology,, Springer, (2003). doi: 10.1007/978-0-387-21761-1.

[1]

Huimin Liang, Peixuan Weng, Yanling Tian. Threshold asymptotic behaviors for a delayed nonlocal reaction-diffusion model of mistletoes and birds in a 2D strip. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1471-1495. doi: 10.3934/cpaa.2016.15.1471

[2]

Huimin Liang, Peixuan Weng, Yanling Tian. Bility and traveling wavefronts for a convolution model of mistletoes and birds with nonlocal diffusion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2207-2231. doi: 10.3934/dcdsb.2017093

[3]

Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057

[4]

Manjun Ma, Xiao-Qiang Zhao. Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 591-606. doi: 10.3934/dcdsb.2016.21.591

[5]

Bingtuan Li, William F. Fagan, Garrett Otto, Chunwei Wang. Spreading speeds and traveling wave solutions in a competitive reaction-diffusion model for species persistence in a stream. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3267-3281. doi: 10.3934/dcdsb.2014.19.3267

[6]

Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126

[7]

Joaquin Riviera, Yi Li. Existence of traveling wave solutions for a nonlocal reaction-diffusion model of influenza a drift. Discrete & Continuous Dynamical Systems - B, 2010, 13 (1) : 157-174. doi: 10.3934/dcdsb.2010.13.157

[8]

Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057

[9]

Dashun Xu, Xiao-Qiang Zhao. Asymptotic speed of spread and traveling waves for a nonlocal epidemic model. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 1043-1056. doi: 10.3934/dcdsb.2005.5.1043

[10]

Keng Deng. On a nonlocal reaction-diffusion population model. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 65-73. doi: 10.3934/dcdsb.2008.9.65

[11]

Kota Ikeda, Masayasu Mimura. Traveling wave solutions of a 3-component reaction-diffusion model in smoldering combustion. Communications on Pure & Applied Analysis, 2012, 11 (1) : 275-305. doi: 10.3934/cpaa.2012.11.275

[12]

Jiamin Cao, Peixuan Weng. Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1405-1426. doi: 10.3934/cpaa.2017067

[13]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[14]

Jia-Feng Cao, Wan-Tong Li, Meng Zhao. On a free boundary problem for a nonlocal reaction-diffusion model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4117-4139. doi: 10.3934/dcdsb.2018128

[15]

Hans F. Weinberger, Kohkichi Kawasaki, Nanako Shigesada. Spreading speeds for a partially cooperative 2-species reaction-diffusion model. Discrete & Continuous Dynamical Systems - A, 2009, 23 (3) : 1087-1098. doi: 10.3934/dcds.2009.23.1087

[16]

Linda J. S. Allen, B. M. Bolker, Yuan Lou, A. L. Nevai. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 1-20. doi: 10.3934/dcds.2008.21.1

[17]

Keng Deng, Yixiang Wu. Asymptotic behavior for a reaction-diffusion population model with delay. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 385-395. doi: 10.3934/dcdsb.2015.20.385

[18]

Keng Deng. Asymptotic behavior of an SIR reaction-diffusion model with a linear source. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-13. doi: 10.3934/dcdsb.2019114

[19]

Yicheng Jiang, Kaijun Zhang. Stability of traveling waves for nonlocal time-delayed reaction-diffusion equations. Kinetic & Related Models, 2018, 11 (5) : 1235-1253. doi: 10.3934/krm.2018048

[20]

Shi-Liang Wu, Tong-Chang Niu, Cheng-Hsiung Hsu. Global asymptotic stability of pushed traveling fronts for monostable delayed reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3467-3486. doi: 10.3934/dcds.2017147

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (3)

[Back to Top]