April  2015, 35(4): 1743-1765. doi: 10.3934/dcds.2015.35.1743

Traveling waves of a mutualistic model of mistletoes and birds

1. 

Department of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China

2. 

Department of Mathematics and Department of Zoology and Physiology, University of Wyoming, Laramie, WY, 82071

3. 

Department of Mathematics, College of William and Mary, Williamsburg, Virginia, 23187-8795

4. 

Department of Zoology and Physiology, University of Wyoming, Laramie, WY, 82071, United States

Received  July 2013 Revised  September 2014 Published  November 2014

The existences of an asymptotic spreading speed and traveling wave solutions for a diffusive model which describes the interaction of mistletoe and bird populations with nonlocal diffusion and delay effect are proved by using monotone semiflow theory. The effects of different dispersal kernels on the asymptotic spreading speeds are investigated through concrete examples and simulations.
Citation: Chuncheng Wang, Rongsong Liu, Junping Shi, Carlos Martinez del Rio. Traveling waves of a mutualistic model of mistletoes and birds. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1743-1765. doi: 10.3934/dcds.2015.35.1743
References:
[1]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. in Math., 30 (1978), 33-76. doi: 10.1016/0001-8708(78)90130-5.

[2]

J. E. Aukema, Vectors, viscin, and viscaceae: Mistletoes as parasites, mutualists, and resources, Front. Ecol. Environ., 1 (2003), 212-219.

[3]

J. E. Aukema and C. M. del Rio, Where does a fruit-eating bird deposit mistletoe seeds? seed deposition patterns and an experiment, Ecology, 83 (2002), 3489-3496. doi: 10.2307/3072097.

[4]

J. Fang, J. Wei and X. Zhao, Spatial dynamics of a nonlocal and time-delayed reaction diffusion system, J. Differential Equations, 245 (2008), 2749-2770. doi: 10.1016/j.jde.2008.09.001.

[5]

J. Fang and X. Zhao, Monotone wavefronts for partially degenerate reaction-diffusion systems, J. Dynam. Differential Equations, 21 (2009), 663-680. doi: 10.1007/s10884-009-9152-7.

[6]

J. Fang and X. Zhao, Traveling waves for monotone semiflows with weak compactness,, SIAM J. Math. Anal., (). 

[7]

C. Gosper, C. D. Stansbury and G. Vivian-Smith, Seed dispersal of fleshy-fruited invasive plants by birds: Contributing factors and management options, Diversity and Distributions, 11 (2005), 549-558. doi: 10.1111/j.1366-9516.2005.00195.x.

[8]

B. Li, Traveling wave solutions in partially degenerate cooperative reaction-diffusion systems, J. Differential Equations, 252 (2012), 4842-4861. doi: 10.1016/j.jde.2012.01.018.

[9]

B. Li, H. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems, Math. Biosci., 196 (2005), 82-98. doi: 10.1016/j.mbs.2005.03.008.

[10]

B. Li and L. Zhang, Travelling wave solutions in delayed cooperative systems, Nonlinearity, 24 (2011), 1759-1776. doi: 10.1088/0951-7715/24/6/004.

[11]

X. Liang and X. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Commun. Pure Appl. Math., 60 (2007), 1-40. doi: 10.1002/cpa.20154.

[12]

X. Liang and X. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems, J. Funct. Anal., 259 (2010), 857-903. doi: 10.1016/j.jfa.2010.04.018.

[13]

G. Lin, W. Li and S. Ruan, Monostable wavefronts in cooperative Lotka-Volterra systems with nonlocal delays, Discrete Contin. Dyn. Syst., 31 (2011), 1-23. doi: 10.3934/dcds.2011.31.1.

[14]

R. Liu, C. M. del Rio and J. Wu, Spatiotemporal variation of mistletoes: A dynamic modeling approach, Bull. Math. Biol., 73 (2011), 1794-1811. doi: 10.1007/s11538-010-9592-6.

[15]

N. Reid, Coevolution of mistletoes and frugivorous birds, Australian Journal of Ecology, 16 (1991), 457-469. doi: 10.1111/j.1442-9993.1991.tb01075.x.

[16]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, vol. 41 of Mathematical Surveys and Monographs, Amer. Math. Soc., Providence, RI, 1995.

[17]

C. Wang, R. Liu, J. Shi and C. M. del Rio, Spatiotemporal mutualistic model of mistletoes and birds, J. Math. Biol., 68 (2014), 1479-1520. doi: 10.1007/s00285-013-0664-8.

[18]

Z. Wang, W. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay, J. Differential Equations, 238 (2007), 153-200. doi: 10.1016/j.jde.2007.03.025.

[19]

Z. Wang, W. Li and S. Ruan, Traveling fronts in monostable equations with nonlocal delayed effects, J. Dynam. Differential Equations, 20 (2008), 573-607. doi: 10.1007/s10884-008-9103-8.

[20]

H. F. Weinberger, M. A. Lewis and B. Li, Anomalous spreading speeds of cooperative recursion systems, J. Math. Biol., 55 (2007), 207-222. doi: 10.1007/s00285-007-0078-6.

[21]

P. Weng and X. Zhao, Spreading speed and traveling waves for a multi-type {SIS} epidemic model, J. Differential Equations, 229 (2006), 270-296. doi: 10.1016/j.jde.2006.01.020.

[22]

S. Wu, Y. Sun and S. Liu, Traveling fronts and entire solutions in partially degenerate reaction-diffusion systems with monostable nonlinearity, Discrete Contin. Dyn. Syst., 33 (2013), 921-946. doi: 10.3934/dcds.2013.33.921.

[23]

X. Zhao, Dynamical System in Population Biology, Springer, New York, 2003. doi: 10.1007/978-0-387-21761-1.

show all references

References:
[1]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. in Math., 30 (1978), 33-76. doi: 10.1016/0001-8708(78)90130-5.

[2]

J. E. Aukema, Vectors, viscin, and viscaceae: Mistletoes as parasites, mutualists, and resources, Front. Ecol. Environ., 1 (2003), 212-219.

[3]

J. E. Aukema and C. M. del Rio, Where does a fruit-eating bird deposit mistletoe seeds? seed deposition patterns and an experiment, Ecology, 83 (2002), 3489-3496. doi: 10.2307/3072097.

[4]

J. Fang, J. Wei and X. Zhao, Spatial dynamics of a nonlocal and time-delayed reaction diffusion system, J. Differential Equations, 245 (2008), 2749-2770. doi: 10.1016/j.jde.2008.09.001.

[5]

J. Fang and X. Zhao, Monotone wavefronts for partially degenerate reaction-diffusion systems, J. Dynam. Differential Equations, 21 (2009), 663-680. doi: 10.1007/s10884-009-9152-7.

[6]

J. Fang and X. Zhao, Traveling waves for monotone semiflows with weak compactness,, SIAM J. Math. Anal., (). 

[7]

C. Gosper, C. D. Stansbury and G. Vivian-Smith, Seed dispersal of fleshy-fruited invasive plants by birds: Contributing factors and management options, Diversity and Distributions, 11 (2005), 549-558. doi: 10.1111/j.1366-9516.2005.00195.x.

[8]

B. Li, Traveling wave solutions in partially degenerate cooperative reaction-diffusion systems, J. Differential Equations, 252 (2012), 4842-4861. doi: 10.1016/j.jde.2012.01.018.

[9]

B. Li, H. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems, Math. Biosci., 196 (2005), 82-98. doi: 10.1016/j.mbs.2005.03.008.

[10]

B. Li and L. Zhang, Travelling wave solutions in delayed cooperative systems, Nonlinearity, 24 (2011), 1759-1776. doi: 10.1088/0951-7715/24/6/004.

[11]

X. Liang and X. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Commun. Pure Appl. Math., 60 (2007), 1-40. doi: 10.1002/cpa.20154.

[12]

X. Liang and X. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems, J. Funct. Anal., 259 (2010), 857-903. doi: 10.1016/j.jfa.2010.04.018.

[13]

G. Lin, W. Li and S. Ruan, Monostable wavefronts in cooperative Lotka-Volterra systems with nonlocal delays, Discrete Contin. Dyn. Syst., 31 (2011), 1-23. doi: 10.3934/dcds.2011.31.1.

[14]

R. Liu, C. M. del Rio and J. Wu, Spatiotemporal variation of mistletoes: A dynamic modeling approach, Bull. Math. Biol., 73 (2011), 1794-1811. doi: 10.1007/s11538-010-9592-6.

[15]

N. Reid, Coevolution of mistletoes and frugivorous birds, Australian Journal of Ecology, 16 (1991), 457-469. doi: 10.1111/j.1442-9993.1991.tb01075.x.

[16]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, vol. 41 of Mathematical Surveys and Monographs, Amer. Math. Soc., Providence, RI, 1995.

[17]

C. Wang, R. Liu, J. Shi and C. M. del Rio, Spatiotemporal mutualistic model of mistletoes and birds, J. Math. Biol., 68 (2014), 1479-1520. doi: 10.1007/s00285-013-0664-8.

[18]

Z. Wang, W. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay, J. Differential Equations, 238 (2007), 153-200. doi: 10.1016/j.jde.2007.03.025.

[19]

Z. Wang, W. Li and S. Ruan, Traveling fronts in monostable equations with nonlocal delayed effects, J. Dynam. Differential Equations, 20 (2008), 573-607. doi: 10.1007/s10884-008-9103-8.

[20]

H. F. Weinberger, M. A. Lewis and B. Li, Anomalous spreading speeds of cooperative recursion systems, J. Math. Biol., 55 (2007), 207-222. doi: 10.1007/s00285-007-0078-6.

[21]

P. Weng and X. Zhao, Spreading speed and traveling waves for a multi-type {SIS} epidemic model, J. Differential Equations, 229 (2006), 270-296. doi: 10.1016/j.jde.2006.01.020.

[22]

S. Wu, Y. Sun and S. Liu, Traveling fronts and entire solutions in partially degenerate reaction-diffusion systems with monostable nonlinearity, Discrete Contin. Dyn. Syst., 33 (2013), 921-946. doi: 10.3934/dcds.2013.33.921.

[23]

X. Zhao, Dynamical System in Population Biology, Springer, New York, 2003. doi: 10.1007/978-0-387-21761-1.

[1]

Huimin Liang, Peixuan Weng, Yanling Tian. Threshold asymptotic behaviors for a delayed nonlocal reaction-diffusion model of mistletoes and birds in a 2D strip. Communications on Pure and Applied Analysis, 2016, 15 (4) : 1471-1495. doi: 10.3934/cpaa.2016.15.1471

[2]

Huimin Liang, Peixuan Weng, Yanling Tian. Bility and traveling wavefronts for a convolution model of mistletoes and birds with nonlocal diffusion. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2207-2231. doi: 10.3934/dcdsb.2017093

[3]

Bang-Sheng Han, Zhi-Cheng Wang. Traveling wave solutions in a nonlocal reaction-diffusion population model. Communications on Pure and Applied Analysis, 2016, 15 (3) : 1057-1076. doi: 10.3934/cpaa.2016.15.1057

[4]

Manjun Ma, Xiao-Qiang Zhao. Monostable waves and spreading speed for a reaction-diffusion model with seasonal succession. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 591-606. doi: 10.3934/dcdsb.2016.21.591

[5]

Bingtuan Li, William F. Fagan, Garrett Otto, Chunwei Wang. Spreading speeds and traveling wave solutions in a competitive reaction-diffusion model for species persistence in a stream. Discrete and Continuous Dynamical Systems - B, 2014, 19 (10) : 3267-3281. doi: 10.3934/dcdsb.2014.19.3267

[6]

Zhenguo Bai, Tingting Zhao. Spreading speed and traveling waves for a non-local delayed reaction-diffusion system without quasi-monotonicity. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4063-4085. doi: 10.3934/dcdsb.2018126

[7]

Joaquin Riviera, Yi Li. Existence of traveling wave solutions for a nonlocal reaction-diffusion model of influenza a drift. Discrete and Continuous Dynamical Systems - B, 2010, 13 (1) : 157-174. doi: 10.3934/dcdsb.2010.13.157

[8]

Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057

[9]

Dashun Xu, Xiao-Qiang Zhao. Asymptotic speed of spread and traveling waves for a nonlocal epidemic model. Discrete and Continuous Dynamical Systems - B, 2005, 5 (4) : 1043-1056. doi: 10.3934/dcdsb.2005.5.1043

[10]

Keng Deng. On a nonlocal reaction-diffusion population model. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 65-73. doi: 10.3934/dcdsb.2008.9.65

[11]

Kota Ikeda, Masayasu Mimura. Traveling wave solutions of a 3-component reaction-diffusion model in smoldering combustion. Communications on Pure and Applied Analysis, 2012, 11 (1) : 275-305. doi: 10.3934/cpaa.2012.11.275

[12]

Jiamin Cao, Peixuan Weng. Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1405-1426. doi: 10.3934/cpaa.2017067

[13]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[14]

Cheng-Hsiung Hsu, Jian-Jhong Lin. Stability analysis of traveling wave solutions for lattice reaction-diffusion equations. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1757-1774. doi: 10.3934/dcdsb.2020001

[15]

Grégory Faye, Thomas Giletti, Matt Holzer. Asymptotic spreading for Fisher-KPP reaction-diffusion equations with heterogeneous shifting diffusivity. Discrete and Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021146

[16]

Tianran Zhang. Traveling waves for a reaction-diffusion model with a cyclic structure. Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 1859-1870. doi: 10.3934/dcdsb.2020006

[17]

Jia-Feng Cao, Wan-Tong Li, Meng Zhao. On a free boundary problem for a nonlocal reaction-diffusion model. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4117-4139. doi: 10.3934/dcdsb.2018128

[18]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4867-4885. doi: 10.3934/dcdsb.2020316

[19]

Linda J. S. Allen, B. M. Bolker, Yuan Lou, A. L. Nevai. Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model. Discrete and Continuous Dynamical Systems, 2008, 21 (1) : 1-20. doi: 10.3934/dcds.2008.21.1

[20]

Keng Deng. Asymptotic behavior of an SIR reaction-diffusion model with a linear source. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 5945-5957. doi: 10.3934/dcdsb.2019114

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (104)
  • HTML views (0)
  • Cited by (5)

[Back to Top]