April  2015, 35(4): 1743-1765. doi: 10.3934/dcds.2015.35.1743

Traveling waves of a mutualistic model of mistletoes and birds

1. 

Department of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China

2. 

Department of Mathematics and Department of Zoology and Physiology, University of Wyoming, Laramie, WY, 82071

3. 

Department of Mathematics, College of William and Mary, Williamsburg, Virginia, 23187-8795

4. 

Department of Zoology and Physiology, University of Wyoming, Laramie, WY, 82071, United States

Received  July 2013 Revised  September 2014 Published  November 2014

The existences of an asymptotic spreading speed and traveling wave solutions for a diffusive model which describes the interaction of mistletoe and bird populations with nonlocal diffusion and delay effect are proved by using monotone semiflow theory. The effects of different dispersal kernels on the asymptotic spreading speeds are investigated through concrete examples and simulations.
Citation: Chuncheng Wang, Rongsong Liu, Junping Shi, Carlos Martinez del Rio. Traveling waves of a mutualistic model of mistletoes and birds. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1743-1765. doi: 10.3934/dcds.2015.35.1743
References:
[1]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics,, Adv. in Math., 30 (1978), 33.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[2]

J. E. Aukema, Vectors, viscin, and viscaceae: Mistletoes as parasites, mutualists, and resources,, Front. Ecol. Environ., 1 (2003), 212.   Google Scholar

[3]

J. E. Aukema and C. M. del Rio, Where does a fruit-eating bird deposit mistletoe seeds? seed deposition patterns and an experiment,, Ecology, 83 (2002), 3489.  doi: 10.2307/3072097.  Google Scholar

[4]

J. Fang, J. Wei and X. Zhao, Spatial dynamics of a nonlocal and time-delayed reaction diffusion system,, J. Differential Equations, 245 (2008), 2749.  doi: 10.1016/j.jde.2008.09.001.  Google Scholar

[5]

J. Fang and X. Zhao, Monotone wavefronts for partially degenerate reaction-diffusion systems,, J. Dynam. Differential Equations, 21 (2009), 663.  doi: 10.1007/s10884-009-9152-7.  Google Scholar

[6]

J. Fang and X. Zhao, Traveling waves for monotone semiflows with weak compactness,, SIAM J. Math. Anal., ().   Google Scholar

[7]

C. Gosper, C. D. Stansbury and G. Vivian-Smith, Seed dispersal of fleshy-fruited invasive plants by birds: Contributing factors and management options,, Diversity and Distributions, 11 (2005), 549.  doi: 10.1111/j.1366-9516.2005.00195.x.  Google Scholar

[8]

B. Li, Traveling wave solutions in partially degenerate cooperative reaction-diffusion systems,, J. Differential Equations, 252 (2012), 4842.  doi: 10.1016/j.jde.2012.01.018.  Google Scholar

[9]

B. Li, H. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems,, Math. Biosci., 196 (2005), 82.  doi: 10.1016/j.mbs.2005.03.008.  Google Scholar

[10]

B. Li and L. Zhang, Travelling wave solutions in delayed cooperative systems,, Nonlinearity, 24 (2011), 1759.  doi: 10.1088/0951-7715/24/6/004.  Google Scholar

[11]

X. Liang and X. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,, Commun. Pure Appl. Math., 60 (2007), 1.  doi: 10.1002/cpa.20154.  Google Scholar

[12]

X. Liang and X. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems,, J. Funct. Anal., 259 (2010), 857.  doi: 10.1016/j.jfa.2010.04.018.  Google Scholar

[13]

G. Lin, W. Li and S. Ruan, Monostable wavefronts in cooperative Lotka-Volterra systems with nonlocal delays,, Discrete Contin. Dyn. Syst., 31 (2011), 1.  doi: 10.3934/dcds.2011.31.1.  Google Scholar

[14]

R. Liu, C. M. del Rio and J. Wu, Spatiotemporal variation of mistletoes: A dynamic modeling approach,, Bull. Math. Biol., 73 (2011), 1794.  doi: 10.1007/s11538-010-9592-6.  Google Scholar

[15]

N. Reid, Coevolution of mistletoes and frugivorous birds,, Australian Journal of Ecology, 16 (1991), 457.  doi: 10.1111/j.1442-9993.1991.tb01075.x.  Google Scholar

[16]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, vol. 41 of Mathematical Surveys and Monographs,, Amer. Math. Soc., (1995).   Google Scholar

[17]

C. Wang, R. Liu, J. Shi and C. M. del Rio, Spatiotemporal mutualistic model of mistletoes and birds,, J. Math. Biol., 68 (2014), 1479.  doi: 10.1007/s00285-013-0664-8.  Google Scholar

[18]

Z. Wang, W. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay,, J. Differential Equations, 238 (2007), 153.  doi: 10.1016/j.jde.2007.03.025.  Google Scholar

[19]

Z. Wang, W. Li and S. Ruan, Traveling fronts in monostable equations with nonlocal delayed effects,, J. Dynam. Differential Equations, 20 (2008), 573.  doi: 10.1007/s10884-008-9103-8.  Google Scholar

[20]

H. F. Weinberger, M. A. Lewis and B. Li, Anomalous spreading speeds of cooperative recursion systems,, J. Math. Biol., 55 (2007), 207.  doi: 10.1007/s00285-007-0078-6.  Google Scholar

[21]

P. Weng and X. Zhao, Spreading speed and traveling waves for a multi-type {SIS} epidemic model,, J. Differential Equations, 229 (2006), 270.  doi: 10.1016/j.jde.2006.01.020.  Google Scholar

[22]

S. Wu, Y. Sun and S. Liu, Traveling fronts and entire solutions in partially degenerate reaction-diffusion systems with monostable nonlinearity,, Discrete Contin. Dyn. Syst., 33 (2013), 921.  doi: 10.3934/dcds.2013.33.921.  Google Scholar

[23]

X. Zhao, Dynamical System in Population Biology,, Springer, (2003).  doi: 10.1007/978-0-387-21761-1.  Google Scholar

show all references

References:
[1]

D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics,, Adv. in Math., 30 (1978), 33.  doi: 10.1016/0001-8708(78)90130-5.  Google Scholar

[2]

J. E. Aukema, Vectors, viscin, and viscaceae: Mistletoes as parasites, mutualists, and resources,, Front. Ecol. Environ., 1 (2003), 212.   Google Scholar

[3]

J. E. Aukema and C. M. del Rio, Where does a fruit-eating bird deposit mistletoe seeds? seed deposition patterns and an experiment,, Ecology, 83 (2002), 3489.  doi: 10.2307/3072097.  Google Scholar

[4]

J. Fang, J. Wei and X. Zhao, Spatial dynamics of a nonlocal and time-delayed reaction diffusion system,, J. Differential Equations, 245 (2008), 2749.  doi: 10.1016/j.jde.2008.09.001.  Google Scholar

[5]

J. Fang and X. Zhao, Monotone wavefronts for partially degenerate reaction-diffusion systems,, J. Dynam. Differential Equations, 21 (2009), 663.  doi: 10.1007/s10884-009-9152-7.  Google Scholar

[6]

J. Fang and X. Zhao, Traveling waves for monotone semiflows with weak compactness,, SIAM J. Math. Anal., ().   Google Scholar

[7]

C. Gosper, C. D. Stansbury and G. Vivian-Smith, Seed dispersal of fleshy-fruited invasive plants by birds: Contributing factors and management options,, Diversity and Distributions, 11 (2005), 549.  doi: 10.1111/j.1366-9516.2005.00195.x.  Google Scholar

[8]

B. Li, Traveling wave solutions in partially degenerate cooperative reaction-diffusion systems,, J. Differential Equations, 252 (2012), 4842.  doi: 10.1016/j.jde.2012.01.018.  Google Scholar

[9]

B. Li, H. F. Weinberger and M. A. Lewis, Spreading speeds as slowest wave speeds for cooperative systems,, Math. Biosci., 196 (2005), 82.  doi: 10.1016/j.mbs.2005.03.008.  Google Scholar

[10]

B. Li and L. Zhang, Travelling wave solutions in delayed cooperative systems,, Nonlinearity, 24 (2011), 1759.  doi: 10.1088/0951-7715/24/6/004.  Google Scholar

[11]

X. Liang and X. Zhao, Asymptotic speeds of spread and traveling waves for monotone semiflows with applications,, Commun. Pure Appl. Math., 60 (2007), 1.  doi: 10.1002/cpa.20154.  Google Scholar

[12]

X. Liang and X. Zhao, Spreading speeds and traveling waves for abstract monostable evolution systems,, J. Funct. Anal., 259 (2010), 857.  doi: 10.1016/j.jfa.2010.04.018.  Google Scholar

[13]

G. Lin, W. Li and S. Ruan, Monostable wavefronts in cooperative Lotka-Volterra systems with nonlocal delays,, Discrete Contin. Dyn. Syst., 31 (2011), 1.  doi: 10.3934/dcds.2011.31.1.  Google Scholar

[14]

R. Liu, C. M. del Rio and J. Wu, Spatiotemporal variation of mistletoes: A dynamic modeling approach,, Bull. Math. Biol., 73 (2011), 1794.  doi: 10.1007/s11538-010-9592-6.  Google Scholar

[15]

N. Reid, Coevolution of mistletoes and frugivorous birds,, Australian Journal of Ecology, 16 (1991), 457.  doi: 10.1111/j.1442-9993.1991.tb01075.x.  Google Scholar

[16]

H. L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, vol. 41 of Mathematical Surveys and Monographs,, Amer. Math. Soc., (1995).   Google Scholar

[17]

C. Wang, R. Liu, J. Shi and C. M. del Rio, Spatiotemporal mutualistic model of mistletoes and birds,, J. Math. Biol., 68 (2014), 1479.  doi: 10.1007/s00285-013-0664-8.  Google Scholar

[18]

Z. Wang, W. Li and S. Ruan, Existence and stability of traveling wave fronts in reaction advection diffusion equations with nonlocal delay,, J. Differential Equations, 238 (2007), 153.  doi: 10.1016/j.jde.2007.03.025.  Google Scholar

[19]

Z. Wang, W. Li and S. Ruan, Traveling fronts in monostable equations with nonlocal delayed effects,, J. Dynam. Differential Equations, 20 (2008), 573.  doi: 10.1007/s10884-008-9103-8.  Google Scholar

[20]

H. F. Weinberger, M. A. Lewis and B. Li, Anomalous spreading speeds of cooperative recursion systems,, J. Math. Biol., 55 (2007), 207.  doi: 10.1007/s00285-007-0078-6.  Google Scholar

[21]

P. Weng and X. Zhao, Spreading speed and traveling waves for a multi-type {SIS} epidemic model,, J. Differential Equations, 229 (2006), 270.  doi: 10.1016/j.jde.2006.01.020.  Google Scholar

[22]

S. Wu, Y. Sun and S. Liu, Traveling fronts and entire solutions in partially degenerate reaction-diffusion systems with monostable nonlinearity,, Discrete Contin. Dyn. Syst., 33 (2013), 921.  doi: 10.3934/dcds.2013.33.921.  Google Scholar

[23]

X. Zhao, Dynamical System in Population Biology,, Springer, (2003).  doi: 10.1007/978-0-387-21761-1.  Google Scholar

[1]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[2]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[3]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[4]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[5]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[6]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[7]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[8]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[9]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[10]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[11]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[12]

Vivina Barutello, Gian Marco Canneori, Susanna Terracini. Minimal collision arcs asymptotic to central configurations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 61-86. doi: 10.3934/dcds.2020218

[13]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[14]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[15]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[16]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[17]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[18]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[19]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[20]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (4)

[Back to Top]