May  2015, 35(5): 1801-1816. doi: 10.3934/dcds.2015.35.1801

The magnetic ray transform on Anosov surfaces

1. 

Department of Pure Mathematics & Mathematical Statistics, University of Cambridge, CB3 0WB, United Kingdom

Received  May 2013 Revised  October 2013 Published  December 2014

Assume (M,g,$\Omega$) is a closed, oriented Riemannian surface equipped with an Anosov magnetic flow. We establish certain results on the surjectivity of the adjoint of the magnetic ray transform, and use these to prove the injectivity of the magnetic ray transform on sums of tensors of degree at most two. In the final section of the paper we give an application to the entropy production of magnetic flows perturbed by symmetric 2-tensors.
Citation: Gareth Ainsworth. The magnetic ray transform on Anosov surfaces. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1801-1816. doi: 10.3934/dcds.2015.35.1801
References:
[1]

G. Ainsworth, The attenuated magnetic ray transforms on surfaces,, Inverse Probl. Imaging., 7 (2013), 27.  doi: 10.3934/ipi.2013.7.27.  Google Scholar

[2]

Yu. Anikonov and V. Romanov, On uniqueness of determination of a form of first degree by its integrals along geodesics,, J. Inverse Ill-Posed Probl., 5 (1997), 487.  doi: 10.1515/jiip.1997.5.6.487.  Google Scholar

[3]

D. V. Anosov, Geodesic flows on closed Riemannian manifolds with negative curvature,, Proc. Steklov Inst. Math., 90 (1967).   Google Scholar

[4]

D. V. Anosov and Y. G. Sinai, Some smooth ergodic systems,, Uspekhi Mat. Nauk, 22 (1967), 107.   Google Scholar

[5]

V. I. Arnold, Some remarks on flows of line elements and frames,, Dokl. Akad. Nauk SSSR, 138 (1961), 255.   Google Scholar

[6]

K. Burns and G. P. Paternain, Anosov magnetic flows, critical values and topological entropy,, Nonlinearity, 15 (2002), 281.  doi: 10.1088/0951-7715/15/2/305.  Google Scholar

[7]

C. Croke and V. A. Sharafutdinov, Spectral rigidity of a compact negatively curved manifolds,, Topology, 37 (1998), 1265.  doi: 10.1016/S0040-9383(97)00086-4.  Google Scholar

[8]

N. S. Dairbekov and G. P. Paternain, Entropy production in Gaussian thermostats,, Comm. Math. Phys., 269 (2007), 533.  doi: 10.1007/s00220-006-0117-y.  Google Scholar

[9]

N. S. Dairbekov and G. P. Paternain, Rigidity properties of Anosov optical hypersurfaces,, Ergod. Th. & Dynam. Sys., 28 (2008), 707.  doi: 10.1017/S0143385707000612.  Google Scholar

[10]

N. S. Dairbekov and G. P. Paternain, Longitudinal KAM cocycles and action spectra of magnetic flows,, Math. Res. Lett., 12 (2005), 719.  doi: 10.4310/MRL.2005.v12.n5.a9.  Google Scholar

[11]

N. S. Dairbekov and G. P. Paternain, On the cohomological equation of magnetic flows,, Mat. Contemp., 34 (2008), 155.   Google Scholar

[12]

N. S. Dairbekov, G. P. Paternain, P. Stefanov and G. Uhlmann, The boundary rigidity problem in the presence of a magnetic field,, Adv. Math., 216 (2007), 535.  doi: 10.1016/j.aim.2007.05.014.  Google Scholar

[13]

N. S. Dairbekov and V. A. Sharafutdinov, Some problems of integral geometry on Anosov manifolds,, Ergod. Th. & Dynam. Sys., 23 (2003), 59.  doi: 10.1017/S0143385702000822.  Google Scholar

[14]

H. M. Farkas and I. Kra, Riemann Surfaces,, Second Edition, (1992).  doi: 10.1007/978-1-4612-2034-3.  Google Scholar

[15]

L. Flaminio and G. Forni, Invariant distributions and time averages for horocycle flows,, Duke Math. J., 119 (2003), 465.  doi: 10.1215/S0012-7094-03-11932-8.  Google Scholar

[16]

E. Ghys, Flots d'Anosov sur les 3-variétés fibrées en cercles,, (French), 4 (1984), 67.  doi: 10.1017/S0143385700002273.  Google Scholar

[17]

V. Guillemin and D. Kazhdan, Some inverse spectral results for negatively curved (2)-manifolds,, Topology, 19 (1980), 301.  doi: 10.1016/0040-9383(80)90015-4.  Google Scholar

[18]

B. Hasselblatt and A. Katok, Introduction to the Modern Theory of Dynamical Systems,, Encyclopedia of Mathematics and its Applications, (1995).  doi: 10.1017/CBO9780511809187.  Google Scholar

[19]

D. Jane and G. P. Paternain, On the injectivity of the X-ray transform for Anosov thermostats,, Discrete Contin. Dyn. Syst., 24 (2009), 471.  doi: 10.3934/dcds.2009.24.471.  Google Scholar

[20]

A. N. Livsic, Certain properties of the homology of Y-systems,, Mat. Zametki, 10 (1971), 555.   Google Scholar

[21]

A. N. Livsic, Cohomology of dynamical systems,, Izv. Akad. Nauk SSSR Ser. Mat., 36 (1972), 1296.   Google Scholar

[22]

R. de la Llave, J. M. Marco and R. Moriyon, Canonical pertubation theory of Anosov systems and regularity results for the Livsic cohomology equation,, Ann. of Math., 123 (1986), 537.  doi: 10.2307/1971334.  Google Scholar

[23]

R. Michel, Sur la rigidité imposée par la longeur des géodésiques,, (French), 65 (1981), 71.  doi: 10.1007/BF01389295.  Google Scholar

[24]

R. G. Mukhometov, The reconstruction problem of a two-dimensional Riemannian metric, and integral geometry,, (Russian), 232 (1977), 32.   Google Scholar

[25]

G. P. Paternain, M. Salo and G. Uhlmann, The attenuated ray transform for connections and Higgs fields,, Geom. Funct. Anal., 22 (2012), 1460.  doi: 10.1007/s00039-012-0183-6.  Google Scholar

[26]

G. P. Paternain, M. Salo and G. Uhlmann, Tensor tomography on surfaces,, Invent. Math., 193 (2013), 229.  doi: 10.1007/s00222-012-0432-1.  Google Scholar

[27]

G. P. Paternain, M. Salo and G. Uhlmann, Spectral rigidity and invariant distributions on Anosov surfaces,, J. Differential Geom., 98 (2014), 147.   Google Scholar

[28]

L. Pestov and G. Uhlmann, Two dimensional compact simple Riemannian manifolds are boundary distance rigid,, Ann. of Math., 161 (2005), 1093.  doi: 10.4007/annals.2005.161.1093.  Google Scholar

[29]

J. Plante and W. Thurston, Anosov flows and the fundamental group,, Topology, 11 (1972), 147.  doi: 10.1016/0040-9383(72)90002-X.  Google Scholar

[30]

M. Pollicott, On the rate of mixing of Axiom A flows,, Invent. Math., 81 (1985), 413.  doi: 10.1007/BF01388579.  Google Scholar

[31]

M. Pollicott, Derivatives of topological entropy for Anosov and geodesic flows,, J. Diff. Geom., 39 (1994), 457.   Google Scholar

[32]

D. Ruelle, Resonances for Axiom A flows,, J. Diff. Geom., 25 (1987), 99.   Google Scholar

[33]

D. Ruelle, Postivity of entropy production in non-equilibrium statistical mechanics,, J. Statist. Phys., 85 (1996), 1.  doi: 10.1007/BF02175553.  Google Scholar

[34]

D. Ruelle, Differentiation of SRB states for hyperbolic flows,, Ergodic Theory Dynam. Systems, 28 (2008), 613.  doi: 10.1017/S0143385707000260.  Google Scholar

[35]

V. A. Sharafutdinova and G. Uhlmann, On deformation boundary rigidity and spectral rigidity of Riemannian surfaces with no focal points,, J. Diff. Geom., 56 (2000), 93.   Google Scholar

[36]

I. Singer and J. Thorpe, Lecture Notes on Elementary Topology and Geometry,, Undergrad. Texts Math. Springer-Verlag, (1967).   Google Scholar

[37]

M. Wojtkowski, Magnetic flows and Gaussian thermostats on manifolds of negative curvature,, Fund. Math., 163 (2000), 177.   Google Scholar

show all references

References:
[1]

G. Ainsworth, The attenuated magnetic ray transforms on surfaces,, Inverse Probl. Imaging., 7 (2013), 27.  doi: 10.3934/ipi.2013.7.27.  Google Scholar

[2]

Yu. Anikonov and V. Romanov, On uniqueness of determination of a form of first degree by its integrals along geodesics,, J. Inverse Ill-Posed Probl., 5 (1997), 487.  doi: 10.1515/jiip.1997.5.6.487.  Google Scholar

[3]

D. V. Anosov, Geodesic flows on closed Riemannian manifolds with negative curvature,, Proc. Steklov Inst. Math., 90 (1967).   Google Scholar

[4]

D. V. Anosov and Y. G. Sinai, Some smooth ergodic systems,, Uspekhi Mat. Nauk, 22 (1967), 107.   Google Scholar

[5]

V. I. Arnold, Some remarks on flows of line elements and frames,, Dokl. Akad. Nauk SSSR, 138 (1961), 255.   Google Scholar

[6]

K. Burns and G. P. Paternain, Anosov magnetic flows, critical values and topological entropy,, Nonlinearity, 15 (2002), 281.  doi: 10.1088/0951-7715/15/2/305.  Google Scholar

[7]

C. Croke and V. A. Sharafutdinov, Spectral rigidity of a compact negatively curved manifolds,, Topology, 37 (1998), 1265.  doi: 10.1016/S0040-9383(97)00086-4.  Google Scholar

[8]

N. S. Dairbekov and G. P. Paternain, Entropy production in Gaussian thermostats,, Comm. Math. Phys., 269 (2007), 533.  doi: 10.1007/s00220-006-0117-y.  Google Scholar

[9]

N. S. Dairbekov and G. P. Paternain, Rigidity properties of Anosov optical hypersurfaces,, Ergod. Th. & Dynam. Sys., 28 (2008), 707.  doi: 10.1017/S0143385707000612.  Google Scholar

[10]

N. S. Dairbekov and G. P. Paternain, Longitudinal KAM cocycles and action spectra of magnetic flows,, Math. Res. Lett., 12 (2005), 719.  doi: 10.4310/MRL.2005.v12.n5.a9.  Google Scholar

[11]

N. S. Dairbekov and G. P. Paternain, On the cohomological equation of magnetic flows,, Mat. Contemp., 34 (2008), 155.   Google Scholar

[12]

N. S. Dairbekov, G. P. Paternain, P. Stefanov and G. Uhlmann, The boundary rigidity problem in the presence of a magnetic field,, Adv. Math., 216 (2007), 535.  doi: 10.1016/j.aim.2007.05.014.  Google Scholar

[13]

N. S. Dairbekov and V. A. Sharafutdinov, Some problems of integral geometry on Anosov manifolds,, Ergod. Th. & Dynam. Sys., 23 (2003), 59.  doi: 10.1017/S0143385702000822.  Google Scholar

[14]

H. M. Farkas and I. Kra, Riemann Surfaces,, Second Edition, (1992).  doi: 10.1007/978-1-4612-2034-3.  Google Scholar

[15]

L. Flaminio and G. Forni, Invariant distributions and time averages for horocycle flows,, Duke Math. J., 119 (2003), 465.  doi: 10.1215/S0012-7094-03-11932-8.  Google Scholar

[16]

E. Ghys, Flots d'Anosov sur les 3-variétés fibrées en cercles,, (French), 4 (1984), 67.  doi: 10.1017/S0143385700002273.  Google Scholar

[17]

V. Guillemin and D. Kazhdan, Some inverse spectral results for negatively curved (2)-manifolds,, Topology, 19 (1980), 301.  doi: 10.1016/0040-9383(80)90015-4.  Google Scholar

[18]

B. Hasselblatt and A. Katok, Introduction to the Modern Theory of Dynamical Systems,, Encyclopedia of Mathematics and its Applications, (1995).  doi: 10.1017/CBO9780511809187.  Google Scholar

[19]

D. Jane and G. P. Paternain, On the injectivity of the X-ray transform for Anosov thermostats,, Discrete Contin. Dyn. Syst., 24 (2009), 471.  doi: 10.3934/dcds.2009.24.471.  Google Scholar

[20]

A. N. Livsic, Certain properties of the homology of Y-systems,, Mat. Zametki, 10 (1971), 555.   Google Scholar

[21]

A. N. Livsic, Cohomology of dynamical systems,, Izv. Akad. Nauk SSSR Ser. Mat., 36 (1972), 1296.   Google Scholar

[22]

R. de la Llave, J. M. Marco and R. Moriyon, Canonical pertubation theory of Anosov systems and regularity results for the Livsic cohomology equation,, Ann. of Math., 123 (1986), 537.  doi: 10.2307/1971334.  Google Scholar

[23]

R. Michel, Sur la rigidité imposée par la longeur des géodésiques,, (French), 65 (1981), 71.  doi: 10.1007/BF01389295.  Google Scholar

[24]

R. G. Mukhometov, The reconstruction problem of a two-dimensional Riemannian metric, and integral geometry,, (Russian), 232 (1977), 32.   Google Scholar

[25]

G. P. Paternain, M. Salo and G. Uhlmann, The attenuated ray transform for connections and Higgs fields,, Geom. Funct. Anal., 22 (2012), 1460.  doi: 10.1007/s00039-012-0183-6.  Google Scholar

[26]

G. P. Paternain, M. Salo and G. Uhlmann, Tensor tomography on surfaces,, Invent. Math., 193 (2013), 229.  doi: 10.1007/s00222-012-0432-1.  Google Scholar

[27]

G. P. Paternain, M. Salo and G. Uhlmann, Spectral rigidity and invariant distributions on Anosov surfaces,, J. Differential Geom., 98 (2014), 147.   Google Scholar

[28]

L. Pestov and G. Uhlmann, Two dimensional compact simple Riemannian manifolds are boundary distance rigid,, Ann. of Math., 161 (2005), 1093.  doi: 10.4007/annals.2005.161.1093.  Google Scholar

[29]

J. Plante and W. Thurston, Anosov flows and the fundamental group,, Topology, 11 (1972), 147.  doi: 10.1016/0040-9383(72)90002-X.  Google Scholar

[30]

M. Pollicott, On the rate of mixing of Axiom A flows,, Invent. Math., 81 (1985), 413.  doi: 10.1007/BF01388579.  Google Scholar

[31]

M. Pollicott, Derivatives of topological entropy for Anosov and geodesic flows,, J. Diff. Geom., 39 (1994), 457.   Google Scholar

[32]

D. Ruelle, Resonances for Axiom A flows,, J. Diff. Geom., 25 (1987), 99.   Google Scholar

[33]

D. Ruelle, Postivity of entropy production in non-equilibrium statistical mechanics,, J. Statist. Phys., 85 (1996), 1.  doi: 10.1007/BF02175553.  Google Scholar

[34]

D. Ruelle, Differentiation of SRB states for hyperbolic flows,, Ergodic Theory Dynam. Systems, 28 (2008), 613.  doi: 10.1017/S0143385707000260.  Google Scholar

[35]

V. A. Sharafutdinova and G. Uhlmann, On deformation boundary rigidity and spectral rigidity of Riemannian surfaces with no focal points,, J. Diff. Geom., 56 (2000), 93.   Google Scholar

[36]

I. Singer and J. Thorpe, Lecture Notes on Elementary Topology and Geometry,, Undergrad. Texts Math. Springer-Verlag, (1967).   Google Scholar

[37]

M. Wojtkowski, Magnetic flows and Gaussian thermostats on manifolds of negative curvature,, Fund. Math., 163 (2000), 177.   Google Scholar

[1]

Dan Jane, Gabriel P. Paternain. On the injectivity of the X-ray transform for Anosov thermostats. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 471-487. doi: 10.3934/dcds.2009.24.471

[2]

François Rouvière. X-ray transform on Damek-Ricci spaces. Inverse Problems & Imaging, 2010, 4 (4) : 713-720. doi: 10.3934/ipi.2010.4.713

[3]

Silvia Allavena, Michele Piana, Federico Benvenuto, Anna Maria Massone. An interpolation/extrapolation approach to X-ray imaging of solar flares. Inverse Problems & Imaging, 2012, 6 (2) : 147-162. doi: 10.3934/ipi.2012.6.147

[4]

Wenzhong Zhu, Huanlong Jiang, Erli Wang, Yani Hou, Lidong Xian, Joyati Debnath. X-ray image global enhancement algorithm in medical image classification. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1297-1309. doi: 10.3934/dcdss.2019089

[5]

Nuutti Hyvönen, Martti Kalke, Matti Lassas, Henri Setälä, Samuli Siltanen. Three-dimensional dental X-ray imaging by combination of panoramic and projection data. Inverse Problems & Imaging, 2010, 4 (2) : 257-271. doi: 10.3934/ipi.2010.4.257

[6]

Arun K. Kulshreshth, Andreas Alpers, Gabor T. Herman, Erik Knudsen, Lajos Rodek, Henning F. Poulsen. A greedy method for reconstructing polycrystals from three-dimensional X-ray diffraction data. Inverse Problems & Imaging, 2009, 3 (1) : 69-85. doi: 10.3934/ipi.2009.3.69

[7]

Zhenhua Zhao, Yining Zhu, Jiansheng Yang, Ming Jiang. Mumford-Shah-TV functional with application in X-ray interior tomography. Inverse Problems & Imaging, 2018, 12 (2) : 331-348. doi: 10.3934/ipi.2018015

[8]

Jakob S. Jørgensen, Emil Y. Sidky, Per Christian Hansen, Xiaochuan Pan. Empirical average-case relation between undersampling and sparsity in X-ray CT. Inverse Problems & Imaging, 2015, 9 (2) : 431-446. doi: 10.3934/ipi.2015.9.431

[9]

Gareth Ainsworth. The attenuated magnetic ray transform on surfaces. Inverse Problems & Imaging, 2013, 7 (1) : 27-46. doi: 10.3934/ipi.2013.7.27

[10]

Yiran Wang. Parametrices for the light ray transform on Minkowski spacetime. Inverse Problems & Imaging, 2018, 12 (1) : 229-237. doi: 10.3934/ipi.2018009

[11]

Yang Zhang. Artifacts in the inversion of the broken ray transform in the plane. Inverse Problems & Imaging, 2020, 14 (1) : 1-26. doi: 10.3934/ipi.2019061

[12]

Gareth Ainsworth, Yernat M. Assylbekov. On the range of the attenuated magnetic ray transform for connections and Higgs fields. Inverse Problems & Imaging, 2015, 9 (2) : 317-335. doi: 10.3934/ipi.2015.9.317

[13]

Siamak RabieniaHaratbar. Support theorem for the Light-Ray transform of vector fields on Minkowski spaces. Inverse Problems & Imaging, 2018, 12 (2) : 293-314. doi: 10.3934/ipi.2018013

[14]

Jan Boman. Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform. Inverse Problems & Imaging, 2010, 4 (4) : 619-630. doi: 10.3934/ipi.2010.4.619

[15]

Venkateswaran P. Krishnan, Plamen Stefanov. A support theorem for the geodesic ray transform of symmetric tensor fields. Inverse Problems & Imaging, 2009, 3 (3) : 453-464. doi: 10.3934/ipi.2009.3.453

[16]

Mark Hubenthal. The broken ray transform in $n$ dimensions with flat reflecting boundary. Inverse Problems & Imaging, 2015, 9 (1) : 143-161. doi: 10.3934/ipi.2015.9.143

[17]

Wenzhi Luo, Zeév Rudnick, Peter Sarnak. The variance of arithmetic measures associated to closed geodesics on the modular surface. Journal of Modern Dynamics, 2009, 3 (2) : 271-309. doi: 10.3934/jmd.2009.3.271

[18]

João P. Almeida, Albert M. Fisher, Alberto Adrego Pinto, David A. Rand. Anosov diffeomorphisms. Conference Publications, 2013, 2013 (special) : 837-845. doi: 10.3934/proc.2013.2013.837

[19]

Venkateswaran P. Krishnan, Ramesh Manna, Suman Kumar Sahoo, Vladimir A. Sharafutdinov. Momentum ray transforms. Inverse Problems & Imaging, 2019, 13 (3) : 679-701. doi: 10.3934/ipi.2019031

[20]

Alex Eskin, Maryam Mirzakhani. Counting closed geodesics in moduli space. Journal of Modern Dynamics, 2011, 5 (1) : 71-105. doi: 10.3934/jmd.2011.5.71

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]