-
Previous Article
Lipschitz perturbations of expansive systems
- DCDS Home
- This Issue
-
Next Article
The magnetic ray transform on Anosov surfaces
Actions of solvable Baumslag-Solitar groups on surfaces with (pseudo)-Anosov elements
1. | Centro de Matemática, Facultad de Ciencias, Iguá 4225, Montevideo, CP 11400, Uruguay |
2. | IMERL, Facultad de Ingeniería, Julio Herrera y Reissig 565, Montevideo, CP 11300, Uruguay, Uruguay |
References:
[1] |
M. Bestvina, Questions in geometric group theory,, Available from , (). Google Scholar |
[2] |
G. Baumslag and D. Solitar, Some two generator one-relator non-Hopfian groups,, Bull. Amer. Math. Soc., 68 (1962), 199.
doi: 10.1090/S0002-9904-1962-10745-9. |
[3] |
D. Fisher, Groups acting on manifolds: Around the Zimmer program,, Geometry, (2011), 72.
doi: 10.7208/chicago/9780226237909.001.0001. |
[4] |
J.Franks and M. Handel, Distortion elements in group actions on surfaces,, Duke Math. J., 131 (2006), 441.
doi: 10.1215/S0012-7094-06-13132-0. |
[5] |
B. Farb, A. Lubotzky and Y. Minsky, Rank one phenomena for mapping class groups,, Duke Math. J., 106 (2001), 581.
doi: 10.1215/S0012-7094-01-10636-4. |
[6] |
B. Farb and D. Margalit, A Primer on Mapping Class Groups,, {Princeton University Press}, (2012).
|
[7] |
B. Farb and L. Mosher, A rigidity theorem for the solvable Baumslag-Solitar groups,, Invent. Math., 131 (1998), 419.
doi: 10.1007/s002220050210. |
[8] |
N. Guelman and I. Liousse, C1- actions of Baumslag-Solitar groups on S1,, AGT, 11 (2011), 1701.
doi: 10.2140/agt.2011.11.1701. |
[9] |
N. Guelman and I. Liousse, Actions of Baumslag-Solitar groups on surfaces,, Disc. Cont. Dyn. Sys., 33 (2013), 1945.
|
[10] |
M. E. Hamstrom, Homotopy groups of the space of homeomorphisms on a $2$- manifold,, Ill. J. Math., 10 (1996), 563.
|
[11] |
A. Hatcher, Algebraic Topology,, Cambridge University Press, (2002).
|
[12] |
A. Koropecki and F. Tal, Bounded and unbounded behaviour for rational pseudo rotations,, Preprint, (). Google Scholar |
[13] |
J. D. McCarthy, Normalizers and centralizers of pseudo-Anosov mapping classes,, Preprint., (). Google Scholar |
[14] |
A. Navas, Groupes resolubles de diffeomorphismes de l'intervalle, du cercle et de la droite,, Bull. Braz. Math. Soc. (N.S.), 35 (2004), 13.
doi: 10.1007/s00574-004-0002-2. |
[15] |
J. F. Plante, Solvable groups acting on the line,, Trans. Amer. Math. Soc., 278 (1983), 401.
doi: 10.1090/S0002-9947-1983-0697084-7. |
[16] |
J. Palis and J. C. Yoccoz, Centralizers of Anosov diffeomorphisms on tori,, Ann. Sc. ENS, 22 (1989), 99.
|
[17] |
J. Rocha, A note on the $C 0$-centralizer of an open class of bidimensional Anosov diffeomorphisms,, Aequ. math., 76 (2008), 105.
doi: 10.1007/s00010-007-2910-x. |
[18] |
R. Zimmer, Actions of semisimple groups and discrete subgroups,, Proc. Internat. Congr. Math., 2 (1987), 1247.
|
show all references
References:
[1] |
M. Bestvina, Questions in geometric group theory,, Available from , (). Google Scholar |
[2] |
G. Baumslag and D. Solitar, Some two generator one-relator non-Hopfian groups,, Bull. Amer. Math. Soc., 68 (1962), 199.
doi: 10.1090/S0002-9904-1962-10745-9. |
[3] |
D. Fisher, Groups acting on manifolds: Around the Zimmer program,, Geometry, (2011), 72.
doi: 10.7208/chicago/9780226237909.001.0001. |
[4] |
J.Franks and M. Handel, Distortion elements in group actions on surfaces,, Duke Math. J., 131 (2006), 441.
doi: 10.1215/S0012-7094-06-13132-0. |
[5] |
B. Farb, A. Lubotzky and Y. Minsky, Rank one phenomena for mapping class groups,, Duke Math. J., 106 (2001), 581.
doi: 10.1215/S0012-7094-01-10636-4. |
[6] |
B. Farb and D. Margalit, A Primer on Mapping Class Groups,, {Princeton University Press}, (2012).
|
[7] |
B. Farb and L. Mosher, A rigidity theorem for the solvable Baumslag-Solitar groups,, Invent. Math., 131 (1998), 419.
doi: 10.1007/s002220050210. |
[8] |
N. Guelman and I. Liousse, C1- actions of Baumslag-Solitar groups on S1,, AGT, 11 (2011), 1701.
doi: 10.2140/agt.2011.11.1701. |
[9] |
N. Guelman and I. Liousse, Actions of Baumslag-Solitar groups on surfaces,, Disc. Cont. Dyn. Sys., 33 (2013), 1945.
|
[10] |
M. E. Hamstrom, Homotopy groups of the space of homeomorphisms on a $2$- manifold,, Ill. J. Math., 10 (1996), 563.
|
[11] |
A. Hatcher, Algebraic Topology,, Cambridge University Press, (2002).
|
[12] |
A. Koropecki and F. Tal, Bounded and unbounded behaviour for rational pseudo rotations,, Preprint, (). Google Scholar |
[13] |
J. D. McCarthy, Normalizers and centralizers of pseudo-Anosov mapping classes,, Preprint., (). Google Scholar |
[14] |
A. Navas, Groupes resolubles de diffeomorphismes de l'intervalle, du cercle et de la droite,, Bull. Braz. Math. Soc. (N.S.), 35 (2004), 13.
doi: 10.1007/s00574-004-0002-2. |
[15] |
J. F. Plante, Solvable groups acting on the line,, Trans. Amer. Math. Soc., 278 (1983), 401.
doi: 10.1090/S0002-9947-1983-0697084-7. |
[16] |
J. Palis and J. C. Yoccoz, Centralizers of Anosov diffeomorphisms on tori,, Ann. Sc. ENS, 22 (1989), 99.
|
[17] |
J. Rocha, A note on the $C 0$-centralizer of an open class of bidimensional Anosov diffeomorphisms,, Aequ. math., 76 (2008), 105.
doi: 10.1007/s00010-007-2910-x. |
[18] |
R. Zimmer, Actions of semisimple groups and discrete subgroups,, Proc. Internat. Congr. Math., 2 (1987), 1247.
|
[1] |
Nancy Guelman, Isabelle Liousse. Actions of Baumslag-Solitar groups on surfaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1945-1964. doi: 10.3934/dcds.2013.33.1945 |
[2] |
Światosław R. Gal, Jarek Kędra. On distortion in groups of homeomorphisms. Journal of Modern Dynamics, 2011, 5 (3) : 609-622. doi: 10.3934/jmd.2011.5.609 |
[3] |
Chris Johnson, Martin Schmoll. Pseudo-Anosov eigenfoliations on Panov planes. Electronic Research Announcements, 2014, 21: 89-108. doi: 10.3934/era.2014.21.89 |
[4] |
Woochul Jung, Keonhee Lee, Carlos Morales, Jumi Oh. Rigidity of random group actions. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6845-6854. doi: 10.3934/dcds.2020130 |
[5] |
Alfonso Artigue. Anomalous cw-expansive surface homeomorphisms. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3511-3518. doi: 10.3934/dcds.2016.36.3511 |
[6] |
Kariane Calta, Thomas A. Schmidt. Infinitely many lattice surfaces with special pseudo-Anosov maps. Journal of Modern Dynamics, 2013, 7 (2) : 239-254. doi: 10.3934/jmd.2013.7.239 |
[7] |
S. Öykü Yurttaş. Dynnikov and train track transition matrices of pseudo-Anosov braids. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 541-570. doi: 10.3934/dcds.2016.36.541 |
[8] |
Francisco R. Ruiz del Portal. Stable sets of planar homeomorphisms with translation pseudo-arcs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (8) : 2379-2390. doi: 10.3934/dcdss.2019149 |
[9] |
Jingzhi Yan. Existence of torsion-low maximal isotopies for area preserving surface homeomorphisms. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4571-4602. doi: 10.3934/dcds.2018200 |
[10] |
Mickaël D. Chekroun, Jean Roux. Homeomorphisms group of normed vector space: Conjugacy problems and the Koopman operator. Discrete & Continuous Dynamical Systems - A, 2013, 33 (9) : 3957-3980. doi: 10.3934/dcds.2013.33.3957 |
[11] |
Andrei Török. Rigidity of partially hyperbolic actions of property (T) groups. Discrete & Continuous Dynamical Systems - A, 2003, 9 (1) : 193-208. doi: 10.3934/dcds.2003.9.193 |
[12] |
Qiao Liu. Local rigidity of certain solvable group actions on tori. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 553-567. doi: 10.3934/dcds.2020269 |
[13] |
A. Katok and R. J. Spatzier. Nonstationary normal forms and rigidity of group actions. Electronic Research Announcements, 1996, 2: 124-133. |
[14] |
Hieu Trung Do, Thomas A. Schmidt. New infinite families of pseudo-Anosov maps with vanishing Sah-Arnoux-Fathi invariant. Journal of Modern Dynamics, 2016, 10: 541-561. doi: 10.3934/jmd.2016.10.541 |
[15] |
Jorge Groisman. Expansive homeomorphisms of the plane. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 213-239. doi: 10.3934/dcds.2011.29.213 |
[16] |
Danijela Damjanovic and Anatole Katok. Local rigidity of actions of higher rank abelian groups and KAM method. Electronic Research Announcements, 2004, 10: 142-154. |
[17] |
Grant Cairns, Barry Jessup, Marcel Nicolau. Topologically transitive homeomorphisms of quotients of tori. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 291-300. doi: 10.3934/dcds.1999.5.291 |
[18] |
Salvador Addas-Zanata, Fábio A. Tal. Homeomorphisms of the annulus with a transitive lift II. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 651-668. doi: 10.3934/dcds.2011.31.651 |
[19] |
Jean-Paul Thouvenot. The work of Lewis Bowen on the entropy theory of non-amenable group actions. Journal of Modern Dynamics, 2019, 15: 133-141. doi: 10.3934/jmd.2019016 |
[20] |
Zhenqi Jenny Wang. New cases of differentiable rigidity for partially hyperbolic actions: Symplectic groups and resonance directions. Journal of Modern Dynamics, 2010, 4 (4) : 585-608. doi: 10.3934/jmd.2010.4.585 |
2019 Impact Factor: 1.338
Tools
Metrics
Other articles
by authors
[Back to Top]