\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Actions of solvable Baumslag-Solitar groups on surfaces with (pseudo)-Anosov elements

Abstract Related Papers Cited by
  • Let $BS(1,n)= \langle a,b : a b a ^{-1} = b ^n\rangle$ be the solvable Baumslag-Solitar group, where $n \geq 2$. We study representations of $BS(1, n)$ by homeomorphisms of closed surfaces of genus $g\geq 1$ with (pseudo)-Anosov elements. That is, we consider a closed surface $S$ of genus $g\geq 1$, and homeomorphisms $f, h: S \to S$ such that $h f h^{-1} = f^n$, for some $ n\geq 2$. It is known that $f$ (or some power of $f$) must be homotopic to the identity. Suppose that $h$ is (pseudo)-Anosov with stretch factor $\lambda >1$. We show that $\langle f,h \rangle$ is not a faithful representation of $BS(1, n)$ if $\lambda > n$. We also show that there are no faithful representations of $BS(1, n)$ by torus homeomorphisms with $h$ an Anosov map and $f$ area preserving (regardless of the value of $\lambda$).
    Mathematics Subject Classification: Primary: 37C85, 37E30, 37B05, 37E45.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Bestvina, Questions in geometric group theory, Available from http://www.math.utah.edu/~bestvina/eprints/questions-updated.pdf.

    [2]

    G. Baumslag and D. Solitar, Some two generator one-relator non-Hopfian groups, Bull. Amer. Math. Soc., 68 (1962), 199-201.doi: 10.1090/S0002-9904-1962-10745-9.

    [3]

    D. Fisher, Groups acting on manifolds: Around the Zimmer program, Geometry, Rigidity and Group Actions, (2011), 72-157.doi: 10.7208/chicago/9780226237909.001.0001.

    [4]

    J.Franks and M. Handel, Distortion elements in group actions on surfaces, Duke Math. J., 131 (2006), 441-468.doi: 10.1215/S0012-7094-06-13132-0.

    [5]

    B. Farb, A. Lubotzky and Y. Minsky, Rank one phenomena for mapping class groups, Duke Math. J., 106 (2001), 581-597.doi: 10.1215/S0012-7094-01-10636-4.

    [6]

    B. Farb and D. Margalit, A Primer on Mapping Class Groups, {Princeton University Press}, 2012.

    [7]

    B. Farb and L. Mosher, A rigidity theorem for the solvable Baumslag-Solitar groups, Invent. Math., 131 (1998), 419-451.doi: 10.1007/s002220050210.

    [8]

    N. Guelman and I. Liousse, C1- actions of Baumslag-Solitar groups on S1, AGT, 11 (2011), 1701-1707.doi: 10.2140/agt.2011.11.1701.

    [9]

    N. Guelman and I. Liousse, Actions of Baumslag-Solitar groups on surfaces, Disc. Cont. Dyn. Sys., 33 (2013), 1945-1964.

    [10]

    M. E. Hamstrom, Homotopy groups of the space of homeomorphisms on a $2$- manifold, Ill. J. Math., 10 (1996), 563-573.

    [11]

    A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.

    [12]

    A. Koropecki and F. Tal, Bounded and unbounded behaviour for rational pseudo rotations, Preprint, arXiv:1207.5573.

    [13]

    J. D. McCarthy, Normalizers and centralizers of pseudo-Anosov mapping classes, Preprint.

    [14]

    A. Navas, Groupes resolubles de diffeomorphismes de l'intervalle, du cercle et de la droite, Bull. Braz. Math. Soc. (N.S.), 35 (2004), 13-50.doi: 10.1007/s00574-004-0002-2.

    [15]

    J. F. Plante, Solvable groups acting on the line, Trans. Amer. Math. Soc., 278 (1983), 401-414.doi: 10.1090/S0002-9947-1983-0697084-7.

    [16]

    J. Palis and J. C. Yoccoz, Centralizers of Anosov diffeomorphisms on tori, Ann. Sc. ENS, 22 (1989), 99-108.

    [17]

    J. Rocha, A note on the $C 0$-centralizer of an open class of bidimensional Anosov diffeomorphisms, Aequ. math., 76 (2008), 105-111.doi: 10.1007/s00010-007-2910-x.

    [18]

    R. Zimmer, Actions of semisimple groups and discrete subgroups, Proc. Internat. Congr. Math., 2 (1987), 1247-1258.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(160) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return