May  2015, 35(5): 1829-1841. doi: 10.3934/dcds.2015.35.1829

Lipschitz perturbations of expansive systems

1. 

Departamento de Matemática y Estadística del Litoral, Universidad de la República, Gral. Rivera 1350, Salto

Received  May 2014 Revised  September 2014 Published  December 2014

We extend some known results from smooth dynamical systems to the category of Lipschitz homeomorphisms of compact metric spaces. We consider dynamical properties as robust expansiveness and structural stability allowing Lipschitz perturbations with respect to a hyperbolic metric. We also study the relationship between Lipschitz topologies and the $C^1$ topology on smooth manifolds.
Citation: Alfonso Artigue. Lipschitz perturbations of expansive systems. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 1829-1841. doi: 10.3934/dcds.2015.35.1829
References:
[1]

N. H. Bingham and A. J. Ostaszewski, Normed versus topological groups: Dichotomy and duality, Dissertationes Mathematicae, 472 (2010), 138pp. doi: 10.4064/dm472-0-1.

[2]

A. Fathi, Expansiveness, hyperbolicity and Hausdorff dimension, Commun. Math. Phys., 126 (1989), 249-262. doi: 10.1007/BF02125125.

[3]

K. Fukui and T. Nakamura, A topological property of Lipschitz mappings, Topology Appl., 148 (2005), 143-152. doi: 10.1016/j.topol.2004.08.005.

[4]

J. Harrison, Unsmoothable diffeomorphisms on higher dimensional manifolds, Proc. Amer. Math. Soc., 73 (1979), 249-255. doi: 10.1090/S0002-9939-1979-0516473-9.

[5]

K. Hiraide, Expansive homeomorphisms of compact surfaces are pseudo-Anosov, Osaka J. Math., 27 (1990), 117-162.

[6]

E. Jeandenans, Difféomorphismes Hyperboliques Des Surfaces Et Combinatoire Des Partitions De Markov, Thesis, 1996.

[7]

J. Lewowicz, Lyapunov functions and topological stability, J. Diff. Eq., 38 (1980), 192-209. doi: 10.1016/0022-0396(80)90004-2.

[8]

J. Lewowicz, Persistence in expansive systems, Erg. Th. & Dyn. Sys., 3 (1983), 567-578. doi: 10.1017/S0143385700002157.

[9]

J. Lewowicz, Expansive homeomorphisms of surfaces, Bol. Soc. Brasil. Mat. (N.S.), 20 (1989), 113-133. doi: 10.1007/BF02585472.

[10]

R. Mañé, Expansive diffeomorphisms, Lecture Notes in Math., Springer, Berlin, 468 (1975), 162-174.

[11]

H. Masur and J. Smillie, Quadratic differentials with prescribed singularities and pseudo-Anosov diffeomorphisms, Comment. Math. Helvetici, 68 (1993), 289-307. doi: 10.1007/BF02565820.

[12]

S. Yu. Pilyugin, A. A. Rodionova and K. Sakai, Orbital and weak shadowing properties, Discrete and continuous dynamical systems, 9 (2003), 287-308. doi: 10.3934/dcds.2003.9.287.

[13]

S. Yu. Pilyugin and S. B. Tikhomirov, Lipschitz shadowing implies structural stability, Nonlinearity, 23 (2010), 2509-2515. doi: 10.1088/0951-7715/23/10/009.

[14]

C. Robinson, Dynamical Systems, CRC Press, $2^{nd}$ edition, 1999.

[15]

K. Sakai and R. Y. Wong, Conjugating homeomorphisms to uniform homeomorphisms, Trans. Amer. Math. Soc., 311 (1989), 337-356. doi: 10.1090/S0002-9947-1989-0974780-0.

[16]

K. Takaki, Lipeomorphisms close to an Anosov diffeomorphism, Nagoya Math. J., 53 (1974), 71-82.

[17]

P. Walters, On the pseudo orbit tracing property and its relationship to stability, Lecture Notes in Math., Springer, 668 (1978), 231-244.

[18]

F. W. Wilson, Pasting diffeomorphisms of $R^n$, Illinois J. Math., 16 (1972), 222-233.

show all references

References:
[1]

N. H. Bingham and A. J. Ostaszewski, Normed versus topological groups: Dichotomy and duality, Dissertationes Mathematicae, 472 (2010), 138pp. doi: 10.4064/dm472-0-1.

[2]

A. Fathi, Expansiveness, hyperbolicity and Hausdorff dimension, Commun. Math. Phys., 126 (1989), 249-262. doi: 10.1007/BF02125125.

[3]

K. Fukui and T. Nakamura, A topological property of Lipschitz mappings, Topology Appl., 148 (2005), 143-152. doi: 10.1016/j.topol.2004.08.005.

[4]

J. Harrison, Unsmoothable diffeomorphisms on higher dimensional manifolds, Proc. Amer. Math. Soc., 73 (1979), 249-255. doi: 10.1090/S0002-9939-1979-0516473-9.

[5]

K. Hiraide, Expansive homeomorphisms of compact surfaces are pseudo-Anosov, Osaka J. Math., 27 (1990), 117-162.

[6]

E. Jeandenans, Difféomorphismes Hyperboliques Des Surfaces Et Combinatoire Des Partitions De Markov, Thesis, 1996.

[7]

J. Lewowicz, Lyapunov functions and topological stability, J. Diff. Eq., 38 (1980), 192-209. doi: 10.1016/0022-0396(80)90004-2.

[8]

J. Lewowicz, Persistence in expansive systems, Erg. Th. & Dyn. Sys., 3 (1983), 567-578. doi: 10.1017/S0143385700002157.

[9]

J. Lewowicz, Expansive homeomorphisms of surfaces, Bol. Soc. Brasil. Mat. (N.S.), 20 (1989), 113-133. doi: 10.1007/BF02585472.

[10]

R. Mañé, Expansive diffeomorphisms, Lecture Notes in Math., Springer, Berlin, 468 (1975), 162-174.

[11]

H. Masur and J. Smillie, Quadratic differentials with prescribed singularities and pseudo-Anosov diffeomorphisms, Comment. Math. Helvetici, 68 (1993), 289-307. doi: 10.1007/BF02565820.

[12]

S. Yu. Pilyugin, A. A. Rodionova and K. Sakai, Orbital and weak shadowing properties, Discrete and continuous dynamical systems, 9 (2003), 287-308. doi: 10.3934/dcds.2003.9.287.

[13]

S. Yu. Pilyugin and S. B. Tikhomirov, Lipschitz shadowing implies structural stability, Nonlinearity, 23 (2010), 2509-2515. doi: 10.1088/0951-7715/23/10/009.

[14]

C. Robinson, Dynamical Systems, CRC Press, $2^{nd}$ edition, 1999.

[15]

K. Sakai and R. Y. Wong, Conjugating homeomorphisms to uniform homeomorphisms, Trans. Amer. Math. Soc., 311 (1989), 337-356. doi: 10.1090/S0002-9947-1989-0974780-0.

[16]

K. Takaki, Lipeomorphisms close to an Anosov diffeomorphism, Nagoya Math. J., 53 (1974), 71-82.

[17]

P. Walters, On the pseudo orbit tracing property and its relationship to stability, Lecture Notes in Math., Springer, 668 (1978), 231-244.

[18]

F. W. Wilson, Pasting diffeomorphisms of $R^n$, Illinois J. Math., 16 (1972), 222-233.

[1]

Manseob Lee, Jumi Oh, Xiao Wen. Diffeomorphisms with a generalized Lipschitz shadowing property. Discrete and Continuous Dynamical Systems, 2021, 41 (4) : 1913-1927. doi: 10.3934/dcds.2020346

[2]

Davor Dragičević. Admissibility, a general type of Lipschitz shadowing and structural stability. Communications on Pure and Applied Analysis, 2015, 14 (3) : 861-880. doi: 10.3934/cpaa.2015.14.861

[3]

Jonathan Meddaugh. Shadowing as a structural property of the space of dynamical systems. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2439-2451. doi: 10.3934/dcds.2021197

[4]

Jorge Groisman. Expansive homeomorphisms of the plane. Discrete and Continuous Dynamical Systems, 2011, 29 (1) : 213-239. doi: 10.3934/dcds.2011.29.213

[5]

João P. Almeida, Albert M. Fisher, Alberto Adrego Pinto, David A. Rand. Anosov diffeomorphisms. Conference Publications, 2013, 2013 (special) : 837-845. doi: 10.3934/proc.2013.2013.837

[6]

Jorge Groisman. Expansive and fixed point free homeomorphisms of the plane. Discrete and Continuous Dynamical Systems, 2012, 32 (5) : 1709-1721. doi: 10.3934/dcds.2012.32.1709

[7]

Alfonso Artigue. Anomalous cw-expansive surface homeomorphisms. Discrete and Continuous Dynamical Systems, 2016, 36 (7) : 3511-3518. doi: 10.3934/dcds.2016.36.3511

[8]

Woochul Jung, Ngocthach Nguyen, Yinong Yang. Spectral decomposition for rescaling expansive flows with rescaled shadowing. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2267-2283. doi: 10.3934/dcds.2020113

[9]

Dominic Veconi. Equilibrium states of almost Anosov diffeomorphisms. Discrete and Continuous Dynamical Systems, 2020, 40 (2) : 767-780. doi: 10.3934/dcds.2020061

[10]

Keonhee Lee, Kazumine Moriyasu, Kazuhiro Sakai. $C^1$-stable shadowing diffeomorphisms. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 683-697. doi: 10.3934/dcds.2008.22.683

[11]

Kazuhiro Sakai. The oe-property of diffeomorphisms. Discrete and Continuous Dynamical Systems, 1998, 4 (3) : 581-591. doi: 10.3934/dcds.1998.4.581

[12]

Fang Zhang, Yunhua Zhou. On the limit quasi-shadowing property. Discrete and Continuous Dynamical Systems, 2017, 37 (5) : 2861-2879. doi: 10.3934/dcds.2017123

[13]

Alfonso Artigue. Robustly N-expansive surface diffeomorphisms. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2367-2376. doi: 10.3934/dcds.2016.36.2367

[14]

Boris Hasselblatt and Amie Wilkinson. Prevalence of non-Lipschitz Anosov foliations. Electronic Research Announcements, 1997, 3: 93-98.

[15]

Patrick Foulon, Boris Hasselblatt. Lipschitz continuous invariant forms for algebraic Anosov systems. Journal of Modern Dynamics, 2010, 4 (3) : 571-584. doi: 10.3934/jmd.2010.4.571

[16]

Artur O. Lopes, Vladimir A. Rosas, Rafael O. Ruggiero. Cohomology and subcohomology problems for expansive, non Anosov geodesic flows. Discrete and Continuous Dynamical Systems, 2007, 17 (2) : 403-422. doi: 10.3934/dcds.2007.17.403

[17]

Maria Carvalho. First homoclinic tangencies in the boundary of Anosov diffeomorphisms. Discrete and Continuous Dynamical Systems, 1998, 4 (4) : 765-782. doi: 10.3934/dcds.1998.4.765

[18]

Matthieu Porte. Linear response for Dirac observables of Anosov diffeomorphisms. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1799-1819. doi: 10.3934/dcds.2019078

[19]

Christian Bonatti, Nancy Guelman. Axiom A diffeomorphisms derived from Anosov flows. Journal of Modern Dynamics, 2010, 4 (1) : 1-63. doi: 10.3934/jmd.2010.4.1

[20]

Baojun Bian, Pengfei Guan. A structural condition for microscopic convexity principle. Discrete and Continuous Dynamical Systems, 2010, 28 (2) : 789-807. doi: 10.3934/dcds.2010.28.789

2020 Impact Factor: 1.392

Metrics

  • PDF downloads (226)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]