• Previous Article
    Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces
  • DCDS Home
  • This Issue
  • Next Article
    A variational approach to reaction-diffusion equations with forced speed in dimension 1
May  2015, 35(5): 1873-1890. doi: 10.3934/dcds.2015.35.1873

Stability of singular limit cycles for Abel equations

1. 

Departamento de Matemáticas, Universidad de Extremadura, Badajoz 06006, Spain, Spain

2. 

Dept. de Matemàtiques, Universitat Autònoma de Barcelona, Edifici C, 08193 Bellaterra, Barcelona

Received  March 2014 Revised  September 2014 Published  December 2014

We obtain a criterion for determining the stability of singular limit cycles of Abel equations $x'=A(t)x^3+B(t)x^2$. This stability controls the possible saddle-node bifurcations of limit cycles. Therefore, studying the Hopf-like bifurcations at $x=0$, together with the bifurcations at infinity of a suitable compactification of the equations, we obtain upper bounds of their number of limit cycles. As an illustration of this approach, we prove that the family $x'=a t(t-t_A)x^3+b (t-t_B)x^2$, with $a ,b>0$, has at most two positive limit cycles for any $t_B,t_A$.
Citation: José Luis Bravo, Manuel Fernández, Armengol Gasull. Stability of singular limit cycles for Abel equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1873-1890. doi: 10.3934/dcds.2015.35.1873
References:
[1]

M. J. Álvarez, A. Gasull and H. Giacomini, A new uniqueness criterion for the number of periodic orbits of Abel equations,, J. Differential Equations, 234 (2007), 161.  doi: 10.1016/j.jde.2006.11.004.  Google Scholar

[2]

M. A. M. Alwash and N. G. Lloyd, Nonautonomous equations related to polynomial two dimensional systems,, Proc. Roy. Soc. Edinburgh Sect. A 105 (1987), 105 (1987), 129.  doi: 10.1017/S0308210500021971.  Google Scholar

[3]

A. A. Andronov, E. A. Leontovich, I. I. Gordon and A. G. Maier, Qualitative Theory of Second-Order Dynamic Systems,, Halsted Press (A division of John Wiley & Sons), (1973).   Google Scholar

[4]

D. M. Benardete, V. W. Noonburg and B. Pollina, Qualitative tools for studying periodic solutions and bifurcations as applied to the periodically harvested logistic equation,, Amer. Math. Monthly, 115 (2008), 202.   Google Scholar

[5]

J. L. Bravo, M. Fernández and A. Gasull, Limit cycles for some Abel equations having coefficients without fixed signs,, Int. J. Bif. Chaos, 19 (2009), 3869.  doi: 10.1142/S0218127409025195.  Google Scholar

[6]

J. L. Bravo and J. Torregrosa, Abel-like equations with no periodic solutions,, J. Math. Anal. Appl., 342 (2008), 931.  doi: 10.1016/j.jmaa.2007.12.060.  Google Scholar

[7]

L. A. Cherkas, Number of limit cycles of an autonomous second-order system,, Diff. Eq., 12 (1976), 944.   Google Scholar

[8]

G. F. D. Duff, Limit-cycles and rotated vector fields,, Ann. of Math., 57 (1953), 15.  doi: 10.2307/1969724.  Google Scholar

[9]

E. Fossas, J. M. Olm and H. Sira-Ramírez, Iterative approximation of limit cycles for a class of Abel equations,, Phys. D, 237 (2008), 3159.  doi: 10.1016/j.physd.2008.05.011.  Google Scholar

[10]

A. Gasull and A. Guillamon, Limit cycles for generalized Abel equations,, Int. J. Bif. Chaos, 16 (2006), 3737.  doi: 10.1142/S0218127406017130.  Google Scholar

[11]

A. Gasull and J. Llibre, Limit cycles for a class of Abel equations,, SIAM J. Math. Anal., 21 (1990), 1235.  doi: 10.1137/0521068.  Google Scholar

[12]

T. Harko and M. K. Mak, Relativistic dissipative cosmological models and Abel differential equation,, Comput. Math. Appl., 46 (2003), 849.  doi: 10.1016/S0898-1221(03)90147-7.  Google Scholar

[13]

E. Kamke, Differentialgleichungen, Lösungsmethoden und Lösungen. I: Gewöhnliche Differentialgleichungen,, Neunte Auflage, (1977).   Google Scholar

[14]

A. Lins Neto, On the number of solutions of the equation $\frac{d x}{dt}=\sum_{j=0}^n a_j(t)x^j$, $0\leq t\leq 1$, for which $x(0)=x(1)$,, Inv. Math., 59 (1980), 67.  doi: 10.1007/BF01390315.  Google Scholar

[15]

N. G. Lloyd, A note on the number of limit cycles in certain two-dimensional systems,, J. London Math. Soc., 20 (1979), 277.  doi: 10.1112/jlms/s2-20.2.277.  Google Scholar

[16]

J. M. Olm and X. Ros-Oton, Existence of periodic solutions with nonconstant sign in a class of generalized Abel equations,, Discrete Contin. Dyn. Syst., 33 (2013), 1603.  doi: 10.3934/dcds.2013.33.1603.  Google Scholar

[17]

J. M. Olm, X. Ros-Oton and T. M. Seara, Periodic solutions with non-constant sign in Abel equations of the second kind,, J. Math. Anal. Appl., 381 (2011), 582.  doi: 10.1016/j.jmaa.2011.02.084.  Google Scholar

[18]

D. E. Panayotounakos and T. I. Zarmpoutis, Construction of Exact Parametric or Closed Form Solutions of Some Unsolvable Classes of Nonlinear ODEs (Abel's Nonlinear ODEs of the First Kind and Relative Degenerate Equations),, Int. J. Math. Math. Sci., 2011 (2011).  doi: 10.1155/2011/387429.  Google Scholar

[19]

A. A. Panov, The number of periodic solutions of polynomial differential equations,, Math. Notes, 64 (1998), 622.  doi: 10.1007/BF02316287.  Google Scholar

[20]

L. M. Perko, Differential Equations and Dynamical Systems,, Third edition, (2001).  doi: 10.1007/978-1-4613-0003-8.  Google Scholar

[21]

V. A. Pliss, Non-Local Problems of the Theory of Oscillations,, Academic Press, (1966).   Google Scholar

[22]

J. Sotomayor, Curvas Definidas Por Equações Diferenciais no Plano,, IMPA, (1981).   Google Scholar

show all references

References:
[1]

M. J. Álvarez, A. Gasull and H. Giacomini, A new uniqueness criterion for the number of periodic orbits of Abel equations,, J. Differential Equations, 234 (2007), 161.  doi: 10.1016/j.jde.2006.11.004.  Google Scholar

[2]

M. A. M. Alwash and N. G. Lloyd, Nonautonomous equations related to polynomial two dimensional systems,, Proc. Roy. Soc. Edinburgh Sect. A 105 (1987), 105 (1987), 129.  doi: 10.1017/S0308210500021971.  Google Scholar

[3]

A. A. Andronov, E. A. Leontovich, I. I. Gordon and A. G. Maier, Qualitative Theory of Second-Order Dynamic Systems,, Halsted Press (A division of John Wiley & Sons), (1973).   Google Scholar

[4]

D. M. Benardete, V. W. Noonburg and B. Pollina, Qualitative tools for studying periodic solutions and bifurcations as applied to the periodically harvested logistic equation,, Amer. Math. Monthly, 115 (2008), 202.   Google Scholar

[5]

J. L. Bravo, M. Fernández and A. Gasull, Limit cycles for some Abel equations having coefficients without fixed signs,, Int. J. Bif. Chaos, 19 (2009), 3869.  doi: 10.1142/S0218127409025195.  Google Scholar

[6]

J. L. Bravo and J. Torregrosa, Abel-like equations with no periodic solutions,, J. Math. Anal. Appl., 342 (2008), 931.  doi: 10.1016/j.jmaa.2007.12.060.  Google Scholar

[7]

L. A. Cherkas, Number of limit cycles of an autonomous second-order system,, Diff. Eq., 12 (1976), 944.   Google Scholar

[8]

G. F. D. Duff, Limit-cycles and rotated vector fields,, Ann. of Math., 57 (1953), 15.  doi: 10.2307/1969724.  Google Scholar

[9]

E. Fossas, J. M. Olm and H. Sira-Ramírez, Iterative approximation of limit cycles for a class of Abel equations,, Phys. D, 237 (2008), 3159.  doi: 10.1016/j.physd.2008.05.011.  Google Scholar

[10]

A. Gasull and A. Guillamon, Limit cycles for generalized Abel equations,, Int. J. Bif. Chaos, 16 (2006), 3737.  doi: 10.1142/S0218127406017130.  Google Scholar

[11]

A. Gasull and J. Llibre, Limit cycles for a class of Abel equations,, SIAM J. Math. Anal., 21 (1990), 1235.  doi: 10.1137/0521068.  Google Scholar

[12]

T. Harko and M. K. Mak, Relativistic dissipative cosmological models and Abel differential equation,, Comput. Math. Appl., 46 (2003), 849.  doi: 10.1016/S0898-1221(03)90147-7.  Google Scholar

[13]

E. Kamke, Differentialgleichungen, Lösungsmethoden und Lösungen. I: Gewöhnliche Differentialgleichungen,, Neunte Auflage, (1977).   Google Scholar

[14]

A. Lins Neto, On the number of solutions of the equation $\frac{d x}{dt}=\sum_{j=0}^n a_j(t)x^j$, $0\leq t\leq 1$, for which $x(0)=x(1)$,, Inv. Math., 59 (1980), 67.  doi: 10.1007/BF01390315.  Google Scholar

[15]

N. G. Lloyd, A note on the number of limit cycles in certain two-dimensional systems,, J. London Math. Soc., 20 (1979), 277.  doi: 10.1112/jlms/s2-20.2.277.  Google Scholar

[16]

J. M. Olm and X. Ros-Oton, Existence of periodic solutions with nonconstant sign in a class of generalized Abel equations,, Discrete Contin. Dyn. Syst., 33 (2013), 1603.  doi: 10.3934/dcds.2013.33.1603.  Google Scholar

[17]

J. M. Olm, X. Ros-Oton and T. M. Seara, Periodic solutions with non-constant sign in Abel equations of the second kind,, J. Math. Anal. Appl., 381 (2011), 582.  doi: 10.1016/j.jmaa.2011.02.084.  Google Scholar

[18]

D. E. Panayotounakos and T. I. Zarmpoutis, Construction of Exact Parametric or Closed Form Solutions of Some Unsolvable Classes of Nonlinear ODEs (Abel's Nonlinear ODEs of the First Kind and Relative Degenerate Equations),, Int. J. Math. Math. Sci., 2011 (2011).  doi: 10.1155/2011/387429.  Google Scholar

[19]

A. A. Panov, The number of periodic solutions of polynomial differential equations,, Math. Notes, 64 (1998), 622.  doi: 10.1007/BF02316287.  Google Scholar

[20]

L. M. Perko, Differential Equations and Dynamical Systems,, Third edition, (2001).  doi: 10.1007/978-1-4613-0003-8.  Google Scholar

[21]

V. A. Pliss, Non-Local Problems of the Theory of Oscillations,, Academic Press, (1966).   Google Scholar

[22]

J. Sotomayor, Curvas Definidas Por Equações Diferenciais no Plano,, IMPA, (1981).   Google Scholar

[1]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[2]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[3]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[4]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[5]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[6]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[7]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[8]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[9]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[10]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[11]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[12]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[13]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[14]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[15]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[16]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[17]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[18]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[19]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[20]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (4)

[Back to Top]