\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces

Abstract / Introduction Related Papers Cited by
  • In this paper, the fully parabolic Keller-Segel system \begin{equation}\label{problemAbstract}\left\{\begin{array}{ll} u_t=\Delta u-\nabla\cdot(u\nabla v), &(x,t)\in \Omega\times (0,T),\\ v_t=\Delta v-v+u, &(x,t)\in\Omega\times (0,T),\\ \end{array}\right.\tag{$\star$} \end{equation} is considered under Neumann boundary conditions in a bounded domain $\Omega\subset\mathbb{R}^n$ with smooth boundary, where $n\ge 2$. We derive a smallness condition on the initial data in optimal Lebesgue spaces which ensure global boundedness and large time convergence. More precisely, we shall show that one can find $\varepsilon_0>0$ such that for all suitably regular initial data $(u_0,v_0)$ satisfying $\|u_0\|_{L^{\frac{n}{2}}(\Omega)}<\varepsilon_0$ and $\|\nabla v_0\|_{L^{n}(\Omega)}<\varepsilon_0$, the above problem possesses a global classical solution which is bounded and converges to the constant steady state $(m,m)$ with $m:=\frac{1}{|\Omega|}\int_\Omega u_0$.
        Our approach allows us to furthermore study a general chemotaxis system with rotational sensitivity in dimension 2, which is lacking the natural energy structure associated with ($\star$). For such systems, we prove a global existence and boundedness result under corresponding smallness conditions on the initially present total mass of cells and the chemical gradient.
    Mathematics Subject Classification: Primary: 35B35, 35B40; Secondary: 92C17.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    X. Cao and S. Ishida, Global-in-time bounded weak solutions to a degenerate quasilinear Keller-Segel system with rotation, Nonlinearity, 27 (2014), 1899-1913.doi: 10.1088/0951-7715/27/8/1899.

    [2]

    L. Corrias, B. Perthame and H. Zaag, Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milan J. Math, 72 (2004), 1-28.doi: 10.1007/s00032-003-0026-x.

    [3]

    L. Corrias and B. Perthame, Asymptotic decay for the solutions of the parabolic-parabolic Keller-Segel chemotaxis system in critical spaces, Mathematical and Computer Modelling, 47 (2008), 755-764.doi: 10.1016/j.mcm.2007.06.005.

    [4]

    M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Normale Superiore, 24 (1997), 633-683.

    [5]

    T. Hillen and K. J. Painter, A user's guide to PDE models in a chemotaxis, J. Math. Biology, 58 (2009), 183-217.doi: 10.1007/s00285-008-0201-3.

    [6]

    D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I, Jber. DMV, 105 (2003), 103-165.

    [7]

    D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.doi: 10.1016/j.jde.2004.10.022.

    [8]

    W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Tran. Amer. Math. Soc., 329 (1992), 819-824.doi: 10.1090/S0002-9947-1992-1046835-6.

    [9]

    E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.doi: 10.1016/0022-5193(70)90092-5.

    [10]

    O. A. Ladyžxenskaja, V. A. Solonnikov and N. N. Ural'cevaLinear and Quasilinear Equations of Parabolic Type, American Mathematical Society, Providence, R. I.,1968.

    [11]

    T. Li, A. Suen, C. Xue and M. Winkler, Global small-data solutions of a two-dimensional chemotaxis system with rotational flux terms, Math. Models Methods Appl. Sci., DOI: 10.1142/S0218202515500177.

    [12]

    T. Nagai, Blowup of Nonradial Solutions to Parabolic-Elliptic Systems Modeling Chemotaxis in Two-Dimensional Domains, J. Inequal. Appl., 6 (2001), 37-55.doi: 10.1155/S1025583401000042.

    [13]

    T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433.

    [14]

    R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Stud. Math. Appl. 2, North-Hlland, Amsterdam, 1997.doi: 10.1115/1.3424338.

    [15]

    I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler and R. E. Goldstein, Bacterial swimming and oxygen transport near contact lines, Proc. Nat. Acad. Sci, 102 (2005), 2277-2282.doi: 10.1073/pnas.0406724102.

    [16]

    M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.doi: 10.1016/j.jde.2010.02.008.

    [17]

    M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767.doi: 10.1016/j.matpur.2013.01.020.

    [18]

    C. Xue and H. G. Othmer, Multiscale models of taxis-driven patterning in bacterial population, SIAM J. Appl. Math., 70 (2009), 133-167.doi: 10.1137/070711505.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(299) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return