-
Previous Article
$L^q$-Extensions of $L^p$-spaces by fractional diffusion equations
- DCDS Home
- This Issue
-
Next Article
Stability of singular limit cycles for Abel equations
Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces
1. | School of Mathematical Science, Dalian University of Technology, Dalian 116023, China |
Our approach allows us to furthermore study a general chemotaxis system with rotational sensitivity in dimension 2, which is lacking the natural energy structure associated with ($\star$). For such systems, we prove a global existence and boundedness result under corresponding smallness conditions on the initially present total mass of cells and the chemical gradient.
References:
[1] |
X. Cao and S. Ishida, Global-in-time bounded weak solutions to a degenerate quasilinear Keller-Segel system with rotation, Nonlinearity, 27 (2014), 1899-1913.
doi: 10.1088/0951-7715/27/8/1899. |
[2] |
L. Corrias, B. Perthame and H. Zaag, Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milan J. Math, 72 (2004), 1-28.
doi: 10.1007/s00032-003-0026-x. |
[3] |
L. Corrias and B. Perthame, Asymptotic decay for the solutions of the parabolic-parabolic Keller-Segel chemotaxis system in critical spaces, Mathematical and Computer Modelling, 47 (2008), 755-764.
doi: 10.1016/j.mcm.2007.06.005. |
[4] |
M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Normale Superiore, 24 (1997), 633-683. |
[5] |
T. Hillen and K. J. Painter, A user's guide to PDE models in a chemotaxis, J. Math. Biology, 58 (2009), 183-217.
doi: 10.1007/s00285-008-0201-3. |
[6] |
D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I, Jber. DMV, 105 (2003), 103-165. |
[7] |
D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.
doi: 10.1016/j.jde.2004.10.022. |
[8] |
W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Tran. Amer. Math. Soc., 329 (1992), 819-824.
doi: 10.1090/S0002-9947-1992-1046835-6. |
[9] |
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[10] |
O. A. Ladyžxenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type,, American Mathematical Society, ().
|
[11] |
T. Li, A. Suen, C. Xue and M. Winkler, Global small-data solutions of a two-dimensional chemotaxis system with rotational flux terms,, Math. Models Methods Appl. Sci., ().
|
[12] |
T. Nagai, Blowup of Nonradial Solutions to Parabolic-Elliptic Systems Modeling Chemotaxis in Two-Dimensional Domains, J. Inequal. Appl., 6 (2001), 37-55.
doi: 10.1155/S1025583401000042. |
[13] |
T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433. |
[14] |
R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Stud. Math. Appl. 2, North-Hlland, Amsterdam, 1997.
doi: 10.1115/1.3424338. |
[15] |
I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler and R. E. Goldstein, Bacterial swimming and oxygen transport near contact lines, Proc. Nat. Acad. Sci, 102 (2005), 2277-2282.
doi: 10.1073/pnas.0406724102. |
[16] |
M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008. |
[17] |
M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767.
doi: 10.1016/j.matpur.2013.01.020. |
[18] |
C. Xue and H. G. Othmer, Multiscale models of taxis-driven patterning in bacterial population, SIAM J. Appl. Math., 70 (2009), 133-167.
doi: 10.1137/070711505. |
show all references
References:
[1] |
X. Cao and S. Ishida, Global-in-time bounded weak solutions to a degenerate quasilinear Keller-Segel system with rotation, Nonlinearity, 27 (2014), 1899-1913.
doi: 10.1088/0951-7715/27/8/1899. |
[2] |
L. Corrias, B. Perthame and H. Zaag, Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milan J. Math, 72 (2004), 1-28.
doi: 10.1007/s00032-003-0026-x. |
[3] |
L. Corrias and B. Perthame, Asymptotic decay for the solutions of the parabolic-parabolic Keller-Segel chemotaxis system in critical spaces, Mathematical and Computer Modelling, 47 (2008), 755-764.
doi: 10.1016/j.mcm.2007.06.005. |
[4] |
M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Normale Superiore, 24 (1997), 633-683. |
[5] |
T. Hillen and K. J. Painter, A user's guide to PDE models in a chemotaxis, J. Math. Biology, 58 (2009), 183-217.
doi: 10.1007/s00285-008-0201-3. |
[6] |
D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences I, Jber. DMV, 105 (2003), 103-165. |
[7] |
D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differential Equations, 215 (2005), 52-107.
doi: 10.1016/j.jde.2004.10.022. |
[8] |
W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Tran. Amer. Math. Soc., 329 (1992), 819-824.
doi: 10.1090/S0002-9947-1992-1046835-6. |
[9] |
E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.
doi: 10.1016/0022-5193(70)90092-5. |
[10] |
O. A. Ladyžxenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasilinear Equations of Parabolic Type,, American Mathematical Society, ().
|
[11] |
T. Li, A. Suen, C. Xue and M. Winkler, Global small-data solutions of a two-dimensional chemotaxis system with rotational flux terms,, Math. Models Methods Appl. Sci., ().
|
[12] |
T. Nagai, Blowup of Nonradial Solutions to Parabolic-Elliptic Systems Modeling Chemotaxis in Two-Dimensional Domains, J. Inequal. Appl., 6 (2001), 37-55.
doi: 10.1155/S1025583401000042. |
[13] |
T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433. |
[14] |
R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, Stud. Math. Appl. 2, North-Hlland, Amsterdam, 1997.
doi: 10.1115/1.3424338. |
[15] |
I. Tuval, L. Cisneros, C. Dombrowski, C. W. Wolgemuth, J. O. Kessler and R. E. Goldstein, Bacterial swimming and oxygen transport near contact lines, Proc. Nat. Acad. Sci, 102 (2005), 2277-2282.
doi: 10.1073/pnas.0406724102. |
[16] |
M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.
doi: 10.1016/j.jde.2010.02.008. |
[17] |
M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767.
doi: 10.1016/j.matpur.2013.01.020. |
[18] |
C. Xue and H. G. Othmer, Multiscale models of taxis-driven patterning in bacterial population, SIAM J. Appl. Math., 70 (2009), 133-167.
doi: 10.1137/070711505. |
[1] |
Hao Yu, Wei Wang, Sining Zheng. Boundedness of solutions to a fully parabolic Keller-Segel system with nonlinear sensitivity. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1635-1644. doi: 10.3934/dcdsb.2017078 |
[2] |
Hao Yu, Wei Wang, Sining Zheng. Global boundedness of solutions to a Keller-Segel system with nonlinear sensitivity. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1317-1327. doi: 10.3934/dcdsb.2016.21.1317 |
[3] |
Chao Deng, Tong Li. Global existence and large time behavior of a 2D Keller-Segel system in logarithmic Lebesgue spaces. Discrete and Continuous Dynamical Systems - B, 2019, 24 (1) : 183-195. doi: 10.3934/dcdsb.2018093 |
[4] |
Qi Wang. Boundary spikes of a Keller-Segel chemotaxis system with saturated logarithmic sensitivity. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1231-1250. doi: 10.3934/dcdsb.2015.20.1231 |
[5] |
Miaoqing Tian, Sining Zheng. Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species. Communications on Pure and Applied Analysis, 2016, 15 (1) : 243-260. doi: 10.3934/cpaa.2016.15.243 |
[6] |
Hai-Yang Jin. Boundedness and large time behavior in a two-dimensional Keller-Segel-Navier-Stokes system with signal-dependent diffusion and sensitivity. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3595-3616. doi: 10.3934/dcds.2018155 |
[7] |
Yadong Shang, Jianjun Paul Tian, Bixiang Wang. Asymptotic behavior of the stochastic Keller-Segel equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (3) : 1367-1391. doi: 10.3934/dcdsb.2019020 |
[8] |
Sachiko Ishida, Tomomi Yokota. Boundedness in a quasilinear fully parabolic Keller-Segel system via maximal Sobolev regularity. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 211-232. doi: 10.3934/dcdss.2020012 |
[9] |
Kentarou Fujie, Chihiro Nishiyama, Tomomi Yokota. Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with the sensitivity $v^{-1}S(u)$. Conference Publications, 2015, 2015 (special) : 464-472. doi: 10.3934/proc.2015.0464 |
[10] |
Kentarou Fujie, Takasi Senba. Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 81-102. doi: 10.3934/dcdsb.2016.21.81 |
[11] |
Norikazu Saito. Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis. Communications on Pure and Applied Analysis, 2012, 11 (1) : 339-364. doi: 10.3934/cpaa.2012.11.339 |
[12] |
Zhichun Zhai. Well-posedness for two types of generalized Keller-Segel system of chemotaxis in critical Besov spaces. Communications on Pure and Applied Analysis, 2011, 10 (1) : 287-308. doi: 10.3934/cpaa.2011.10.287 |
[13] |
Xie Li, Zhaoyin Xiang. Boundedness in quasilinear Keller-Segel equations with nonlinear sensitivity and logistic source. Discrete and Continuous Dynamical Systems, 2015, 35 (8) : 3503-3531. doi: 10.3934/dcds.2015.35.3503 |
[14] |
Sachiko Ishida. An iterative approach to $L^\infty$-boundedness in quasilinear Keller-Segel systems. Conference Publications, 2015, 2015 (special) : 635-643. doi: 10.3934/proc.2015.0635 |
[15] |
Jan Burczak, Rafael Granero-Belinchón. Boundedness and homogeneous asymptotics for a fractional logistic Keller-Segel equations. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 139-164. doi: 10.3934/dcdss.2020008 |
[16] |
Qi Wang, Jingyue Yang, Feng Yu. Boundedness in logistic Keller-Segel models with nonlinear diffusion and sensitivity functions. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 5021-5036. doi: 10.3934/dcds.2017216 |
[17] |
Xinru Cao. Large time behavior in the logistic Keller-Segel model via maximal Sobolev regularity. Discrete and Continuous Dynamical Systems - B, 2017, 22 (9) : 3369-3378. doi: 10.3934/dcdsb.2017141 |
[18] |
Yajing Zhang, Xinfu Chen, Jianghao Hao, Xin Lai, Cong Qin. Dynamics of spike in a Keller-Segel's minimal chemotaxis model. Discrete and Continuous Dynamical Systems, 2017, 37 (2) : 1109-1127. doi: 10.3934/dcds.2017046 |
[19] |
Mengyao Ding, Xiangdong Zhao. $ L^\sigma $-measure criteria for boundedness in a quasilinear parabolic-parabolic Keller-Segel system with supercritical sensitivity. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5297-5315. doi: 10.3934/dcdsb.2019059 |
[20] |
Mengyao Ding, Sining Zheng. $ L^γ$-measure criteria for boundedness in a quasilinear parabolic-elliptic Keller-Segel system with supercritical sensitivity. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 2971-2988. doi: 10.3934/dcdsb.2018295 |
2020 Impact Factor: 1.392
Tools
Metrics
Other articles
by authors
[Back to Top]