• Previous Article
    Radial stability of periodic solutions of the Gylden-Meshcherskii-type problem
  • DCDS Home
  • This Issue
  • Next Article
    Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces
May  2015, 35(5): 1905-1920. doi: 10.3934/dcds.2015.35.1905

$L^q$-Extensions of $L^p$-spaces by fractional diffusion equations

1. 

Department of Mathematics and Department of Computer Science, Georgetown University, Washington D.C. 20057

2. 

Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada

Received  May 2014 Revised  September 2014 Published  December 2014

Based on the geometric-measure-theoretic analysis of a new $L^p$-type capacity defined in the upper-half Euclidean space, this note characterizes a nonnegative Randon measure $\mu$ on $\mathbb R^{1+n}_+$ such that the extension $R_\alpha L^p(\mathbb R^n)\subseteq L^q(\mathbb R^{1+n}_+,\mu)$ holds for $(\alpha,p,q)\in (0,1)\times(1,\infty)\times(1,\infty)$ where $u=R_\alpha f$ is the weak solution of the fractional diffusion equation $(\partial_t + (-\Delta_x)^\alpha)u(t, x) = 0$ in $\mathbb R^{1+n}_+$ subject to $u(0,x)=f(x)$ in $\mathbb R^n$.
Citation: Der-Chen Chang, Jie Xiao. $L^q$-Extensions of $L^p$-spaces by fractional diffusion equations. Discrete & Continuous Dynamical Systems, 2015, 35 (5) : 1905-1920. doi: 10.3934/dcds.2015.35.1905
References:
[1]

Ark. Mat., 14 (1976), 125-140. doi: 10.1007/BF02385830.  Google Scholar

[2]

Forum Math. 20 (2008), 341-357. doi: 10.1515/FORUM.2008.017.  Google Scholar

[3]

A Series of Comprehensive Studies in Mathematics, Springer, Berlin, 1996. doi: 10.1007/978-3-662-03282-4.  Google Scholar

[4]

Math. Ann. 325 (2003), 695-709. doi: 10.1007/s00208-002-0396-3.  Google Scholar

[5]

Physical Review E, 72 (2005), 011109. doi: 10.1103/PhysRevE.72.011109.  Google Scholar

[6]

Trans. Amer. Math. Soc., 95 (1960), 263-273. doi: 10.1090/S0002-9947-1960-0119247-6.  Google Scholar

[7]

Comm. Partial Diff. Equ., 32 (2007), 1245-1260. doi: 10.1080/03605300600987306.  Google Scholar

[8]

Invent. Math., 171 (2008), 425-461. doi: 10.1007/s00222-007-0086-6.  Google Scholar

[9]

hal-00505027, version 4 - 12 Apr 2011. Google Scholar

[10]

Nonlinear Anal., 75 (2012), 2959-2974. doi: 10.1016/j.na.2011.11.039.  Google Scholar

[11]

Math. Ann., 312 (1998), 465-501. doi: 10.1007/s002080050232.  Google Scholar

[12]

SIAM J. Math. Anal., 30 (1999), 937-948. doi: 10.1137/S0036141098337333.  Google Scholar

[13]

Commmun. Math. Phys., 249 (2004), 511-528. doi: 10.1007/s00220-004-1055-1.  Google Scholar

[14]

Arch. Rational Mech. Anal., 45 (1972), 222-240. doi: 10.1007/BF00281533.  Google Scholar

[15]

Springer-Verlag, New York, 1969.  Google Scholar

[16]

R. Jiang, J. Xiao, D. Yang and Z. Zhai, Regularity and capacity for the fractional dissipative operator,, , ().   Google Scholar

[17]

Math. Res. Lett., 20 (2013), 933-945. arXiv:1212.0183v1 [math.AP]2Dec2012. doi: 10.4310/MRL.2013.v20.n5.a9.  Google Scholar

[18]

Potential Anal., 4 (1995), 47-65. doi: 10.1007/BF01048966.  Google Scholar

[19]

Nonlinear Anal., 68 (2008), 461-484. doi: 10.1016/j.na.2006.11.011.  Google Scholar

[20]

Osaka J. Math., 42 (2005), 133-162.  Google Scholar

[21]

Hokkaido Math. J., 36 (2007), 563-583. doi: 10.14492/hokmj/1277472867.  Google Scholar

[22]

Hiroshima Math. J., 38 (2008), 177-192.  Google Scholar

[23]

Tohoku Math. J., 62 (2010), 269-286. doi: 10.2748/tmj/1277298649.  Google Scholar

[24]

J. Math. Soc. Japan, 58 (2006), 83-96. doi: 10.2969/jmsj/1145287094.  Google Scholar

[25]

Frac. Calc. Appl. Anal., 14 (2011), 334-342. doi: 10.2478/s13540-011-0021-9.  Google Scholar

[26]

J. Math. Anal. Appl., 340 (2008), 1326-1335. doi: 10.1016/j.jmaa.2007.09.060.  Google Scholar

[27]

Electron. J. Differential Equations, 2001 (2001), 1-13.  Google Scholar

[28]

Commun. Math. Phys., 263 (2006), 803-831. doi: 10.1007/s00220-005-1483-6.  Google Scholar

[29]

J. Diff. Equ., 224 (2006), 277-295. doi: 10.1016/j.jde.2005.07.014.  Google Scholar

[30]

Adv. Math., 207 (2006), 828-846. doi: 10.1016/j.aim.2006.01.010.  Google Scholar

[31]

L. Xie and X. Zhang, Heat kernel estimates for critical fractional diffusion operator,, , ().   Google Scholar

[32]

J. Math. Anal. Appl., 356 (2009), 642-658. doi: 10.1016/j.jmaa.2009.03.051.  Google Scholar

[33]

Nonlinear Anal., 73 (2010), 2611-2630. doi: 10.1016/j.na.2010.06.040.  Google Scholar

show all references

References:
[1]

Ark. Mat., 14 (1976), 125-140. doi: 10.1007/BF02385830.  Google Scholar

[2]

Forum Math. 20 (2008), 341-357. doi: 10.1515/FORUM.2008.017.  Google Scholar

[3]

A Series of Comprehensive Studies in Mathematics, Springer, Berlin, 1996. doi: 10.1007/978-3-662-03282-4.  Google Scholar

[4]

Math. Ann. 325 (2003), 695-709. doi: 10.1007/s00208-002-0396-3.  Google Scholar

[5]

Physical Review E, 72 (2005), 011109. doi: 10.1103/PhysRevE.72.011109.  Google Scholar

[6]

Trans. Amer. Math. Soc., 95 (1960), 263-273. doi: 10.1090/S0002-9947-1960-0119247-6.  Google Scholar

[7]

Comm. Partial Diff. Equ., 32 (2007), 1245-1260. doi: 10.1080/03605300600987306.  Google Scholar

[8]

Invent. Math., 171 (2008), 425-461. doi: 10.1007/s00222-007-0086-6.  Google Scholar

[9]

hal-00505027, version 4 - 12 Apr 2011. Google Scholar

[10]

Nonlinear Anal., 75 (2012), 2959-2974. doi: 10.1016/j.na.2011.11.039.  Google Scholar

[11]

Math. Ann., 312 (1998), 465-501. doi: 10.1007/s002080050232.  Google Scholar

[12]

SIAM J. Math. Anal., 30 (1999), 937-948. doi: 10.1137/S0036141098337333.  Google Scholar

[13]

Commmun. Math. Phys., 249 (2004), 511-528. doi: 10.1007/s00220-004-1055-1.  Google Scholar

[14]

Arch. Rational Mech. Anal., 45 (1972), 222-240. doi: 10.1007/BF00281533.  Google Scholar

[15]

Springer-Verlag, New York, 1969.  Google Scholar

[16]

R. Jiang, J. Xiao, D. Yang and Z. Zhai, Regularity and capacity for the fractional dissipative operator,, , ().   Google Scholar

[17]

Math. Res. Lett., 20 (2013), 933-945. arXiv:1212.0183v1 [math.AP]2Dec2012. doi: 10.4310/MRL.2013.v20.n5.a9.  Google Scholar

[18]

Potential Anal., 4 (1995), 47-65. doi: 10.1007/BF01048966.  Google Scholar

[19]

Nonlinear Anal., 68 (2008), 461-484. doi: 10.1016/j.na.2006.11.011.  Google Scholar

[20]

Osaka J. Math., 42 (2005), 133-162.  Google Scholar

[21]

Hokkaido Math. J., 36 (2007), 563-583. doi: 10.14492/hokmj/1277472867.  Google Scholar

[22]

Hiroshima Math. J., 38 (2008), 177-192.  Google Scholar

[23]

Tohoku Math. J., 62 (2010), 269-286. doi: 10.2748/tmj/1277298649.  Google Scholar

[24]

J. Math. Soc. Japan, 58 (2006), 83-96. doi: 10.2969/jmsj/1145287094.  Google Scholar

[25]

Frac. Calc. Appl. Anal., 14 (2011), 334-342. doi: 10.2478/s13540-011-0021-9.  Google Scholar

[26]

J. Math. Anal. Appl., 340 (2008), 1326-1335. doi: 10.1016/j.jmaa.2007.09.060.  Google Scholar

[27]

Electron. J. Differential Equations, 2001 (2001), 1-13.  Google Scholar

[28]

Commun. Math. Phys., 263 (2006), 803-831. doi: 10.1007/s00220-005-1483-6.  Google Scholar

[29]

J. Diff. Equ., 224 (2006), 277-295. doi: 10.1016/j.jde.2005.07.014.  Google Scholar

[30]

Adv. Math., 207 (2006), 828-846. doi: 10.1016/j.aim.2006.01.010.  Google Scholar

[31]

L. Xie and X. Zhang, Heat kernel estimates for critical fractional diffusion operator,, , ().   Google Scholar

[32]

J. Math. Anal. Appl., 356 (2009), 642-658. doi: 10.1016/j.jmaa.2009.03.051.  Google Scholar

[33]

Nonlinear Anal., 73 (2010), 2611-2630. doi: 10.1016/j.na.2010.06.040.  Google Scholar

[1]

Khalid Latrach, Hssaine Oummi, Ahmed Zeghal. Existence results for nonlinear mono-energetic singular transport equations: $ L^p $-spaces. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021028

[2]

Tomasz Kosmala, Markus Riedle. Variational solutions of stochastic partial differential equations with cylindrical Lévy noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2879-2898. doi: 10.3934/dcdsb.2020209

[3]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

[4]

Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2873-2890. doi: 10.3934/dcds.2020389

[5]

Asato Mukai, Yukihiro Seki. Refined construction of type II blow-up solutions for semilinear heat equations with Joseph–Lundgren supercritical nonlinearity. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021060

[6]

Braxton Osting, Jérôme Darbon, Stanley Osher. Statistical ranking using the $l^{1}$-norm on graphs. Inverse Problems & Imaging, 2013, 7 (3) : 907-926. doi: 10.3934/ipi.2013.7.907

[7]

Bin Pei, Yong Xu, Yuzhen Bai. Convergence of p-th mean in an averaging principle for stochastic partial differential equations driven by fractional Brownian motion. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 1141-1158. doi: 10.3934/dcdsb.2019213

[8]

Ahmad Mousavi, Zheming Gao, Lanshan Han, Alvin Lim. Quadratic surface support vector machine with L1 norm regularization. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021046

[9]

Mingshang Hu, Shige Peng. G-Lévy processes under sublinear expectations. Probability, Uncertainty and Quantitative Risk, 2021, 6 (1) : 1-22. doi: 10.3934/puqr.2021001

[10]

Ankit Kumar, Kamal Jeet, Ramesh Kumar Vats. Controllability of Hilfer fractional integro-differential equations of Sobolev-type with a nonlocal condition in a Banach space. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021016

[11]

Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227

[12]

Mirela Kohr, Sergey E. Mikhailov, Wolfgang L. Wendland. Dirichlet and transmission problems for anisotropic stokes and Navier-Stokes systems with L tensor coefficient under relaxed ellipticity condition. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021042

[13]

Wenyuan Wang, Ran Xu. General drawdown based dividend control with fixed transaction costs for spectrally negative Lévy risk processes. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020179

[14]

Beom-Seok Han, Kyeong-Hun Kim, Daehan Park. A weighted Sobolev space theory for the diffusion-wave equations with time-fractional derivatives on $ C^{1} $ domains. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3415-3445. doi: 10.3934/dcds.2021002

[15]

Jinye Shen, Xian-Ming Gu. Two finite difference methods based on an H2N2 interpolation for two-dimensional time fractional mixed diffusion and diffusion-wave equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021086

[16]

Mauricio Achigar. Extensions of expansive dynamical systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3093-3108. doi: 10.3934/dcds.2020399

[17]

Shuang Wang, Dingbian Qian. Periodic solutions of p-Laplacian equations via rotation numbers. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021060

[18]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3211-3240. doi: 10.3934/dcds.2020403

[19]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[20]

Xuping Zhang. Pullback random attractors for fractional stochastic $ p $-Laplacian equation with delay and multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021107

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (97)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]