May  2015, 35(5): 1921-1932. doi: 10.3934/dcds.2015.35.1921

Radial stability of periodic solutions of the Gylden-Meshcherskii-type problem

1. 

Department of Mathematics, College of Science, Hohai University, Nanjing 210098, China, China

2. 

Departamento de Matemática Aplicada, Universidad de Granada, 18071 Granada

Received  January 2014 Revised  October 2014 Published  December 2014

For the Gylden-Meshcherskii-type problem with a periodically cha-nging gravitational parameter, we prove the existence of radially periodic solutions with high angular momentum, which are Lyapunov stable in the radial direction.
Citation: Jifeng Chu, Pedro J. Torres, Feng Wang. Radial stability of periodic solutions of the Gylden-Meshcherskii-type problem. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1921-1932. doi: 10.3934/dcds.2015.35.1921
References:
[1]

A. A. Bekov, Periodic solutions of the Gylden-Meshcherskii problem,, Astron. Rep., 37 (1993), 651.   Google Scholar

[2]

J. Chu and M. Li, Twist periodic solutions of second order singular differential equations,, J. Math. Anal. Appl., 355 (2009), 830.  doi: 10.1016/j.jmaa.2009.02.033.  Google Scholar

[3]

J. Chu, P. J. Torres and M. Zhang, Periodic solutions of second order non-autonomous singular dynamical systems,, J. Differential Equations, 239 (2007), 196.  doi: 10.1016/j.jde.2007.05.007.  Google Scholar

[4]

J. Chu and M. Zhang, Rotation numbers and Lyapunov stability of elliptic periodic solutions,, Discrete Contin. Dyn. Syst., 21 (2008), 1071.  doi: 10.3934/dcds.2008.21.1071.  Google Scholar

[5]

E. N. Dancer and R. Ortega, The index of Lyapunov stable fixed points in two dimensions,, J. Dynam. Differential Equations, 6 (1994), 631.  doi: 10.1007/BF02218851.  Google Scholar

[6]

C. De Coster and P. Habets, Upper and lower solutions in the theory of ODE boundary value problems: classical and recent results,, in Nonlinear Analysis and Boundary Value Problems for Ordinary Differential Equations, (1996), 1.   Google Scholar

[7]

M. A. del Pino and R. F. Manásevich, Infinitely many $T$-periodic solutions for a problem arising in nonlinear elasticity,, J. Differential Equations, 103 (1993), 260.  doi: 10.1006/jdeq.1993.1050.  Google Scholar

[8]

A. Deprit, The secular accelerations in Gylden's problem,, Celestial Mechanics, 31 (1983), 1.  doi: 10.1007/BF01272557.  Google Scholar

[9]

A. Fonda and R. Toader, Periodic orbits of radially symmetric Keplerian-like systems: A topological degree approach,, J. Differential Equations, 244 (2008), 3235.  doi: 10.1016/j.jde.2007.11.005.  Google Scholar

[10]

A. Fonda and R. Toader, Radially symmetric systems with a singularity and asymptotically linear growth,, Nonlinear Anal., 74 (2011), 2485.  doi: 10.1016/j.na.2010.12.004.  Google Scholar

[11]

A. Fonda and R. Toader, Periodic orbits of radially symmetric systems with a singularity: The repulsive case,, Adv. Nonlinear Stud., 11 (2011), 853.   Google Scholar

[12]

A. Fonda and R. Toader, Periodic solutions of radially symmetric perturbations of Newtonian systems,, Proc. Amer. Math. Soc., 140 (2012), 1331.  doi: 10.1090/S0002-9939-2011-10992-4.  Google Scholar

[13]

A. Fonda, R. Toader and F. Zanolin, Periodic solutions of singular radially symmetric systems with superlinear growth,, Ann. Mat. Pura Appl., 191 (2012), 181.  doi: 10.1007/s10231-010-0178-6.  Google Scholar

[14]

A. Fonda and A. J. Ureña, Periodic, subharmonic, and quasi-periodic oscillations under the action of a central force,, Discrete Contin. Dyn. Syst., 29 (2011), 169.  doi: 10.3934/dcds.2011.29.169.  Google Scholar

[15]

D. Jiang, J. Chu and M. Zhang, Multiplicity of positive periodic solutions to superlinear repulsive singular equations,, J. Differential Equations, 211 (2005), 282.  doi: 10.1016/j.jde.2004.10.031.  Google Scholar

[16]

A. C. Lazer and S. Solimini, On periodic solutions of nonlinear differential equations with singularities,, Proc. Amer. Math. Soc., 99 (1987), 109.  doi: 10.1090/S0002-9939-1987-0866438-7.  Google Scholar

[17]

J. Lei, X. Li, P. Yan and M. Zhang, Twist character of the least amplitude periodic solution of the forced pendulum,, SIAM J. Math. Anal., 35 (2003), 844.  doi: 10.1137/S003614100241037X.  Google Scholar

[18]

J. Lei, P. J. Torres and M. Zhang, Twist character of the fourth order resonant periodic solution,, J. Dynam. Differential Equations, 17 (2005), 21.  doi: 10.1007/s10884-005-2937-4.  Google Scholar

[19]

Q. Liu and D. Qian, Nonlinear dynamics of differential equations with attractive-repulsive singularities and small time-dependent coefficients,, Math. Methods Appl. Sci., 36 (2013), 227.  doi: 10.1002/mma.2594.  Google Scholar

[20]

R. Ortega, Periodic solution of a Newtonian equation: Stability by the third approximation,, J. Differential Equations, 128 (1996), 491.  doi: 10.1006/jdeq.1996.0103.  Google Scholar

[21]

A. Pal, D. Selaru, V. Mioc and C. Cucu-Dumitrescu, The Gylden-type problem revisited: More refined analytical solutions,, Astron. Nachr., 327 (2006), 304.  doi: 10.1002/asna.200510537.  Google Scholar

[22]

I. Rachunková, M. Tvrdý and I. Vrkoč, Existence of nonnegative and nonpositive solutions for second order periodic boundary value problems,, J. Differential Equations, 176 (2001), 445.  doi: 10.1006/jdeq.2000.3995.  Google Scholar

[23]

J. A. Sanders and F. Verhulst, Averaging Methods in Nonlinear Dynamical Systems,, Applied Math. Sci., 59 (1985).  doi: 10.1007/978-1-4757-4575-7.  Google Scholar

[24]

W. C. Saslaw, Motion around a source whose luminosity changes,, The Astrophysical Journal, 226 (1978), 240.  doi: 10.1086/156603.  Google Scholar

[25]

D. Selaru, C. Cucu-Dumitrescu and V. Mioc, On a two-body problem with periodically changing equivalent gravitational parameter,, Astron. Nachr., 313 (1992), 257.  doi: 10.1002/asna.2113130408.  Google Scholar

[26]

D. Selaru and V. Mioc, Le probleme de Gyldén du point de vue de la théorie KAM,, C. R. Acad. Sci. Paris, 325 (1997), 487.   Google Scholar

[27]

D. Selaru, V. Mioc and C. Cucu-Dumitrescu, The periodic Gyldén-type problem in Astrophysics,, AIP Conf. Proc., 895 (2007), 163.   Google Scholar

[28]

C. Siegel and J. Moser, Lectures on Celestial Mechanics,, Springer-Verlag, (1971).   Google Scholar

[29]

S. Solimini, On forced dynamical systems with a singularity of repulsive type,, Nonlinear Anal., 14 (1990), 489.  doi: 10.1016/0362-546X(90)90037-H.  Google Scholar

[30]

P. J. Torres, Twist solutions of a Hill's equations with singular term,, Adv. Nonlinear Stud., 2 (2002), 279.   Google Scholar

[31]

P. J. Torres, Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem,, J. Differential Equations, 190 (2003), 643.  doi: 10.1016/S0022-0396(02)00152-3.  Google Scholar

[32]

P. J. Torres, Weak singularities may help periodic solutions to exist,, J. Differential Equations, 232 (2007), 277.  doi: 10.1016/j.jde.2006.08.006.  Google Scholar

[33]

P. J. Torres, Existence and stability of periodic solutions for second order semilinear differential equations with a singular nonlinearity,, Proc. Royal Soc. Edinburgh Sect. A., 137 (2007), 195.  doi: 10.1017/S0308210505000739.  Google Scholar

[34]

P. J. Torres and M. Zhang, A monotone iterative scheme for a nonlinear second order equation based on a generalized anti-maximum principle,, Math. Nachr., 251 (2003), 101.  doi: 10.1002/mana.200310033.  Google Scholar

[35]

P. J. Torres and M. Zhang, Twist periodic solutions of repulsive singular equations,, Nonlinear Anal., 56 (2004), 591.  doi: 10.1016/j.na.2003.10.005.  Google Scholar

[36]

F. Verhulst, Nonlinear Differential Equations and Dynamical Systems,, Universitext, (1996).  doi: 10.1007/978-3-642-61453-8.  Google Scholar

[37]

P. Yan and M. Zhang, Higher order nonresonance for differential equations with singularities,, Math. Methods Appl. Sci., 26 (2003), 1067.  doi: 10.1002/mma.413.  Google Scholar

[38]

M. Zhang, The best bound on the rotations in the stability of periodic solutions of a Newtonian equation,, J. London Math. Soc., 67 (2003), 137.  doi: 10.1112/S0024610702003939.  Google Scholar

[39]

M. Zhang, Periodic solutions of equations of Ermakov-Pinney type,, Adv. Nonlinear Stud., 6 (2006), 57.   Google Scholar

show all references

References:
[1]

A. A. Bekov, Periodic solutions of the Gylden-Meshcherskii problem,, Astron. Rep., 37 (1993), 651.   Google Scholar

[2]

J. Chu and M. Li, Twist periodic solutions of second order singular differential equations,, J. Math. Anal. Appl., 355 (2009), 830.  doi: 10.1016/j.jmaa.2009.02.033.  Google Scholar

[3]

J. Chu, P. J. Torres and M. Zhang, Periodic solutions of second order non-autonomous singular dynamical systems,, J. Differential Equations, 239 (2007), 196.  doi: 10.1016/j.jde.2007.05.007.  Google Scholar

[4]

J. Chu and M. Zhang, Rotation numbers and Lyapunov stability of elliptic periodic solutions,, Discrete Contin. Dyn. Syst., 21 (2008), 1071.  doi: 10.3934/dcds.2008.21.1071.  Google Scholar

[5]

E. N. Dancer and R. Ortega, The index of Lyapunov stable fixed points in two dimensions,, J. Dynam. Differential Equations, 6 (1994), 631.  doi: 10.1007/BF02218851.  Google Scholar

[6]

C. De Coster and P. Habets, Upper and lower solutions in the theory of ODE boundary value problems: classical and recent results,, in Nonlinear Analysis and Boundary Value Problems for Ordinary Differential Equations, (1996), 1.   Google Scholar

[7]

M. A. del Pino and R. F. Manásevich, Infinitely many $T$-periodic solutions for a problem arising in nonlinear elasticity,, J. Differential Equations, 103 (1993), 260.  doi: 10.1006/jdeq.1993.1050.  Google Scholar

[8]

A. Deprit, The secular accelerations in Gylden's problem,, Celestial Mechanics, 31 (1983), 1.  doi: 10.1007/BF01272557.  Google Scholar

[9]

A. Fonda and R. Toader, Periodic orbits of radially symmetric Keplerian-like systems: A topological degree approach,, J. Differential Equations, 244 (2008), 3235.  doi: 10.1016/j.jde.2007.11.005.  Google Scholar

[10]

A. Fonda and R. Toader, Radially symmetric systems with a singularity and asymptotically linear growth,, Nonlinear Anal., 74 (2011), 2485.  doi: 10.1016/j.na.2010.12.004.  Google Scholar

[11]

A. Fonda and R. Toader, Periodic orbits of radially symmetric systems with a singularity: The repulsive case,, Adv. Nonlinear Stud., 11 (2011), 853.   Google Scholar

[12]

A. Fonda and R. Toader, Periodic solutions of radially symmetric perturbations of Newtonian systems,, Proc. Amer. Math. Soc., 140 (2012), 1331.  doi: 10.1090/S0002-9939-2011-10992-4.  Google Scholar

[13]

A. Fonda, R. Toader and F. Zanolin, Periodic solutions of singular radially symmetric systems with superlinear growth,, Ann. Mat. Pura Appl., 191 (2012), 181.  doi: 10.1007/s10231-010-0178-6.  Google Scholar

[14]

A. Fonda and A. J. Ureña, Periodic, subharmonic, and quasi-periodic oscillations under the action of a central force,, Discrete Contin. Dyn. Syst., 29 (2011), 169.  doi: 10.3934/dcds.2011.29.169.  Google Scholar

[15]

D. Jiang, J. Chu and M. Zhang, Multiplicity of positive periodic solutions to superlinear repulsive singular equations,, J. Differential Equations, 211 (2005), 282.  doi: 10.1016/j.jde.2004.10.031.  Google Scholar

[16]

A. C. Lazer and S. Solimini, On periodic solutions of nonlinear differential equations with singularities,, Proc. Amer. Math. Soc., 99 (1987), 109.  doi: 10.1090/S0002-9939-1987-0866438-7.  Google Scholar

[17]

J. Lei, X. Li, P. Yan and M. Zhang, Twist character of the least amplitude periodic solution of the forced pendulum,, SIAM J. Math. Anal., 35 (2003), 844.  doi: 10.1137/S003614100241037X.  Google Scholar

[18]

J. Lei, P. J. Torres and M. Zhang, Twist character of the fourth order resonant periodic solution,, J. Dynam. Differential Equations, 17 (2005), 21.  doi: 10.1007/s10884-005-2937-4.  Google Scholar

[19]

Q. Liu and D. Qian, Nonlinear dynamics of differential equations with attractive-repulsive singularities and small time-dependent coefficients,, Math. Methods Appl. Sci., 36 (2013), 227.  doi: 10.1002/mma.2594.  Google Scholar

[20]

R. Ortega, Periodic solution of a Newtonian equation: Stability by the third approximation,, J. Differential Equations, 128 (1996), 491.  doi: 10.1006/jdeq.1996.0103.  Google Scholar

[21]

A. Pal, D. Selaru, V. Mioc and C. Cucu-Dumitrescu, The Gylden-type problem revisited: More refined analytical solutions,, Astron. Nachr., 327 (2006), 304.  doi: 10.1002/asna.200510537.  Google Scholar

[22]

I. Rachunková, M. Tvrdý and I. Vrkoč, Existence of nonnegative and nonpositive solutions for second order periodic boundary value problems,, J. Differential Equations, 176 (2001), 445.  doi: 10.1006/jdeq.2000.3995.  Google Scholar

[23]

J. A. Sanders and F. Verhulst, Averaging Methods in Nonlinear Dynamical Systems,, Applied Math. Sci., 59 (1985).  doi: 10.1007/978-1-4757-4575-7.  Google Scholar

[24]

W. C. Saslaw, Motion around a source whose luminosity changes,, The Astrophysical Journal, 226 (1978), 240.  doi: 10.1086/156603.  Google Scholar

[25]

D. Selaru, C. Cucu-Dumitrescu and V. Mioc, On a two-body problem with periodically changing equivalent gravitational parameter,, Astron. Nachr., 313 (1992), 257.  doi: 10.1002/asna.2113130408.  Google Scholar

[26]

D. Selaru and V. Mioc, Le probleme de Gyldén du point de vue de la théorie KAM,, C. R. Acad. Sci. Paris, 325 (1997), 487.   Google Scholar

[27]

D. Selaru, V. Mioc and C. Cucu-Dumitrescu, The periodic Gyldén-type problem in Astrophysics,, AIP Conf. Proc., 895 (2007), 163.   Google Scholar

[28]

C. Siegel and J. Moser, Lectures on Celestial Mechanics,, Springer-Verlag, (1971).   Google Scholar

[29]

S. Solimini, On forced dynamical systems with a singularity of repulsive type,, Nonlinear Anal., 14 (1990), 489.  doi: 10.1016/0362-546X(90)90037-H.  Google Scholar

[30]

P. J. Torres, Twist solutions of a Hill's equations with singular term,, Adv. Nonlinear Stud., 2 (2002), 279.   Google Scholar

[31]

P. J. Torres, Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem,, J. Differential Equations, 190 (2003), 643.  doi: 10.1016/S0022-0396(02)00152-3.  Google Scholar

[32]

P. J. Torres, Weak singularities may help periodic solutions to exist,, J. Differential Equations, 232 (2007), 277.  doi: 10.1016/j.jde.2006.08.006.  Google Scholar

[33]

P. J. Torres, Existence and stability of periodic solutions for second order semilinear differential equations with a singular nonlinearity,, Proc. Royal Soc. Edinburgh Sect. A., 137 (2007), 195.  doi: 10.1017/S0308210505000739.  Google Scholar

[34]

P. J. Torres and M. Zhang, A monotone iterative scheme for a nonlinear second order equation based on a generalized anti-maximum principle,, Math. Nachr., 251 (2003), 101.  doi: 10.1002/mana.200310033.  Google Scholar

[35]

P. J. Torres and M. Zhang, Twist periodic solutions of repulsive singular equations,, Nonlinear Anal., 56 (2004), 591.  doi: 10.1016/j.na.2003.10.005.  Google Scholar

[36]

F. Verhulst, Nonlinear Differential Equations and Dynamical Systems,, Universitext, (1996).  doi: 10.1007/978-3-642-61453-8.  Google Scholar

[37]

P. Yan and M. Zhang, Higher order nonresonance for differential equations with singularities,, Math. Methods Appl. Sci., 26 (2003), 1067.  doi: 10.1002/mma.413.  Google Scholar

[38]

M. Zhang, The best bound on the rotations in the stability of periodic solutions of a Newtonian equation,, J. London Math. Soc., 67 (2003), 137.  doi: 10.1112/S0024610702003939.  Google Scholar

[39]

M. Zhang, Periodic solutions of equations of Ermakov-Pinney type,, Adv. Nonlinear Stud., 6 (2006), 57.   Google Scholar

[1]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[2]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[3]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[4]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[5]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[6]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[7]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020052

[8]

Jan Bouwe van den Berg, Elena Queirolo. A general framework for validated continuation of periodic orbits in systems of polynomial ODEs. Journal of Computational Dynamics, 2021, 8 (1) : 59-97. doi: 10.3934/jcd.2021004

[9]

Adrian Constantin, Darren G. Crowdy, Vikas S. Krishnamurthy, Miles H. Wheeler. Stuart-type polar vortices on a rotating sphere. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 201-215. doi: 10.3934/dcds.2020263

[10]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[11]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[12]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[13]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[14]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[15]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[16]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[17]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[18]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[19]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[20]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (12)

Other articles
by authors

[Back to Top]