\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Radial stability of periodic solutions of the Gylden-Meshcherskii-type problem

Abstract / Introduction Related Papers Cited by
  • For the Gylden-Meshcherskii-type problem with a periodically cha-nging gravitational parameter, we prove the existence of radially periodic solutions with high angular momentum, which are Lyapunov stable in the radial direction.
    Mathematics Subject Classification: Primary: 34C25; Secondary: 34D20.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    A. A. Bekov, Periodic solutions of the Gylden-Meshcherskii problem, Astron. Rep., 37 (1993), 651-654.

    [2]

    J. Chu and M. Li, Twist periodic solutions of second order singular differential equations, J. Math. Anal. Appl., 355 (2009), 830-838.doi: 10.1016/j.jmaa.2009.02.033.

    [3]

    J. Chu, P. J. Torres and M. Zhang, Periodic solutions of second order non-autonomous singular dynamical systems, J. Differential Equations, 239 (2007), 196-212.doi: 10.1016/j.jde.2007.05.007.

    [4]

    J. Chu and M. Zhang, Rotation numbers and Lyapunov stability of elliptic periodic solutions, Discrete Contin. Dyn. Syst., 21 (2008), 1071-1094.doi: 10.3934/dcds.2008.21.1071.

    [5]

    E. N. Dancer and R. Ortega, The index of Lyapunov stable fixed points in two dimensions, J. Dynam. Differential Equations, 6 (1994), 631-637.doi: 10.1007/BF02218851.

    [6]

    C. De Coster and P. Habets, Upper and lower solutions in the theory of ODE boundary value problems: classical and recent results, in Nonlinear Analysis and Boundary Value Problems for Ordinary Differential Equations, edited by F. Zanolin, CISM-CICMS 371 (Springer-Verlag, New York, 1996), pp. 1-78.

    [7]

    M. A. del Pino and R. F. Manásevich, Infinitely many $T$-periodic solutions for a problem arising in nonlinear elasticity, J. Differential Equations, 103 (1993), 260-277.doi: 10.1006/jdeq.1993.1050.

    [8]

    A. Deprit, The secular accelerations in Gylden's problem, Celestial Mechanics, 31 (1983), 1-22.doi: 10.1007/BF01272557.

    [9]

    A. Fonda and R. Toader, Periodic orbits of radially symmetric Keplerian-like systems: A topological degree approach, J. Differential Equations, 244 (2008), 3235-3264.doi: 10.1016/j.jde.2007.11.005.

    [10]

    A. Fonda and R. Toader, Radially symmetric systems with a singularity and asymptotically linear growth, Nonlinear Anal., 74 (2011), 2485-2496.doi: 10.1016/j.na.2010.12.004.

    [11]

    A. Fonda and R. Toader, Periodic orbits of radially symmetric systems with a singularity: The repulsive case, Adv. Nonlinear Stud., 11 (2011), 853-874.

    [12]

    A. Fonda and R. Toader, Periodic solutions of radially symmetric perturbations of Newtonian systems, Proc. Amer. Math. Soc., 140 (2012), 1331-1341.doi: 10.1090/S0002-9939-2011-10992-4.

    [13]

    A. Fonda, R. Toader and F. Zanolin, Periodic solutions of singular radially symmetric systems with superlinear growth, Ann. Mat. Pura Appl., 191 (2012), 181-204.doi: 10.1007/s10231-010-0178-6.

    [14]

    A. Fonda and A. J. Ureña, Periodic, subharmonic, and quasi-periodic oscillations under the action of a central force, Discrete Contin. Dyn. Syst., 29 (2011), 169-192.doi: 10.3934/dcds.2011.29.169.

    [15]

    D. Jiang, J. Chu and M. Zhang, Multiplicity of positive periodic solutions to superlinear repulsive singular equations, J. Differential Equations, 211 (2005), 282-302.doi: 10.1016/j.jde.2004.10.031.

    [16]

    A. C. Lazer and S. Solimini, On periodic solutions of nonlinear differential equations with singularities, Proc. Amer. Math. Soc., 99 (1987), 109-114.doi: 10.1090/S0002-9939-1987-0866438-7.

    [17]

    J. Lei, X. Li, P. Yan and M. Zhang, Twist character of the least amplitude periodic solution of the forced pendulum, SIAM J. Math. Anal., 35 (2003), 844-867.doi: 10.1137/S003614100241037X.

    [18]

    J. Lei, P. J. Torres and M. Zhang, Twist character of the fourth order resonant periodic solution, J. Dynam. Differential Equations, 17 (2005), 21-50.doi: 10.1007/s10884-005-2937-4.

    [19]

    Q. Liu and D. Qian, Nonlinear dynamics of differential equations with attractive-repulsive singularities and small time-dependent coefficients, Math. Methods Appl. Sci., 36 (2013), 227-233.doi: 10.1002/mma.2594.

    [20]

    R. Ortega, Periodic solution of a Newtonian equation: Stability by the third approximation, J. Differential Equations, 128 (1996), 491-518.doi: 10.1006/jdeq.1996.0103.

    [21]

    A. Pal, D. Selaru, V. Mioc and C. Cucu-Dumitrescu, The Gylden-type problem revisited: More refined analytical solutions, Astron. Nachr., 327 (2006), 304-308.doi: 10.1002/asna.200510537.

    [22]

    I. Rachunková, M. Tvrdý and I. Vrkoč, Existence of nonnegative and nonpositive solutions for second order periodic boundary value problems, J. Differential Equations, 176 (2001), 445-469.doi: 10.1006/jdeq.2000.3995.

    [23]

    J. A. Sanders and F. Verhulst, Averaging Methods in Nonlinear Dynamical Systems, Applied Math. Sci., 59, Springer, New York, 1985.doi: 10.1007/978-1-4757-4575-7.

    [24]

    W. C. Saslaw, Motion around a source whose luminosity changes, The Astrophysical Journal, 226 (1978), 240-252.doi: 10.1086/156603.

    [25]

    D. Selaru, C. Cucu-Dumitrescu and V. Mioc, On a two-body problem with periodically changing equivalent gravitational parameter, Astron. Nachr., 313 (1992), 257-263.doi: 10.1002/asna.2113130408.

    [26]

    D. Selaru and V. Mioc, Le probleme de Gyldén du point de vue de la théorie KAM, C. R. Acad. Sci. Paris, 325 (1997), 487-490.

    [27]

    D. Selaru, V. Mioc and C. Cucu-Dumitrescu, The periodic Gyldén-type problem in Astrophysics, AIP Conf. Proc., 895 (2007), 163-170.

    [28]

    C. Siegel and J. Moser, Lectures on Celestial Mechanics, Springer-Verlag, Berlin, 1971.

    [29]

    S. Solimini, On forced dynamical systems with a singularity of repulsive type, Nonlinear Anal., 14 (1990), 489-500.doi: 10.1016/0362-546X(90)90037-H.

    [30]

    P. J. Torres, Twist solutions of a Hill's equations with singular term, Adv. Nonlinear Stud., 2 (2002), 279-287.

    [31]

    P. J. Torres, Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem, J. Differential Equations, 190 (2003), 643-662.doi: 10.1016/S0022-0396(02)00152-3.

    [32]

    P. J. Torres, Weak singularities may help periodic solutions to exist, J. Differential Equations, 232 (2007), 277-284.doi: 10.1016/j.jde.2006.08.006.

    [33]

    P. J. Torres, Existence and stability of periodic solutions for second order semilinear differential equations with a singular nonlinearity, Proc. Royal Soc. Edinburgh Sect. A., 137 (2007), 195-201.doi: 10.1017/S0308210505000739.

    [34]

    P. J. Torres and M. Zhang, A monotone iterative scheme for a nonlinear second order equation based on a generalized anti-maximum principle, Math. Nachr., 251 (2003), 101-107.doi: 10.1002/mana.200310033.

    [35]

    P. J. Torres and M. Zhang, Twist periodic solutions of repulsive singular equations, Nonlinear Anal., 56 (2004), 591-599.doi: 10.1016/j.na.2003.10.005.

    [36]

    F. Verhulst, Nonlinear Differential Equations and Dynamical Systems, Universitext, Springer, 1996.doi: 10.1007/978-3-642-61453-8.

    [37]

    P. Yan and M. Zhang, Higher order nonresonance for differential equations with singularities, Math. Methods Appl. Sci., 26 (2003), 1067-1074.doi: 10.1002/mma.413.

    [38]

    M. Zhang, The best bound on the rotations in the stability of periodic solutions of a Newtonian equation, J. London Math. Soc., 67 (2003), 137-148.doi: 10.1112/S0024610702003939.

    [39]

    M. Zhang, Periodic solutions of equations of Ermakov-Pinney type, Adv. Nonlinear Stud., 6 (2006), 57-67.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(123) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return