• Previous Article
    Integrability of potentials of degree $k \neq \pm 2$. Second order variational equations between Kolchin solvability and Abelianity
  • DCDS Home
  • This Issue
  • Next Article
    Radial stability of periodic solutions of the Gylden-Meshcherskii-type problem
May  2015, 35(5): 1933-1968. doi: 10.3934/dcds.2015.35.1933

Topological defects in the abelian Higgs model

1. 

Department of Mathematical Sciences, Binghamton University (SUNY), Binghamton, NY 13902-6000

2. 

Department of Mathematics, University of Toronto, Bahen Centre 40 St. George St., Room 6290, Toronto, ON M5S 2E4, Canada

Received  December 2013 Revised  September 2014 Published  December 2014

We give a rigorous description of the dynamics of the Nielsen-Olesen vortex line. In particular, given a worldsheet of a string, we construct initial data such that the corresponding solution of the abelian Higgs model will concentrate near the evolution of the string. Moreover, the constructed solution stays close to the Nielsen-Olesen vortex solution.
Citation: Magdalena Czubak, Robert L. Jerrard. Topological defects in the abelian Higgs model. Discrete & Continuous Dynamical Systems, 2015, 35 (5) : 1933-1968. doi: 10.3934/dcds.2015.35.1933
References:
[1]

J. Funct. Anal., 256 (2009), 2268-2290. doi: 10.1016/j.jfa.2008.09.020.  Google Scholar

[2]

Complex Anal. Oper. Theory, 4 (2010), 473-496. doi: 10.1007/s11785-010-0060-y.  Google Scholar

[3]

Phys. D, 239 (2010), 335-339. doi: 10.1016/j.physd.2009.12.004.  Google Scholar

[4]

J. Funct. Anal., 82 (1989), 259-295. doi: 10.1016/0022-1236(89)90071-2.  Google Scholar

[5]

The birth of string theory, Cambridge University Press, Cambridge, 2012. xxvi+636 pp.  Google Scholar

[6]

Progr. Theoret. Phys., 46 (1971), 1560-1569. doi: 10.1143/PTP.46.1560.  Google Scholar

[7]

Comm. Math. Phys., 212 (2000), 257-275. doi: 10.1007/PL00005526.  Google Scholar

[8]

Adv. Math., 199 (2006), 448-498. doi: 10.1016/j.aim.2005.05.017.  Google Scholar

[9]

Birkhäuser Boston, Mass., 1980, Structure of static gauge theories.  Google Scholar

[10]

SIAM J. Math. Anal., 30 (1999), 721-746 (electronic). doi: 10.1137/S0036141097300581.  Google Scholar

[11]

Calc. Var. Partial Differential Equations, 9 (1999), 1-30. doi: 10.1007/s005260050131.  Google Scholar

[12]

Anal. PDE, 4 (2011), 285-340. doi: 10.2140/apde.2011.4.285.  Google Scholar

[13]

R. Jerrard, M. Novaga and G. Orlandi, On the regularity of timelike extremal surfaces,, To appear, ().  doi: 10.1142/S0219199714500485.  Google Scholar

[14]

Comm. Partial Differential Equations, 22 (1997), 1161-1225.  Google Scholar

[15]

Journal of Physics A: Mathematical and General, 9 (1976), 1387. doi: 10.1088/0305-4470/9/8/029.  Google Scholar

[16]

Duke Math. J., 74 (1994), 19-44. doi: 10.1215/S0012-7094-94-07402-4.  Google Scholar

[17]

Comm. Pure Appl. Math., 52 (1999), 737-761. doi: 10.1002/(SICI)1097-0312(199906)52:6<737::AID-CPA3>3.0.CO;2-Y.  Google Scholar

[18]

World Scientific Publishing Co. Inc., River Edge, NJ, 1995, Selected papers of Y. Nambu, Edited and with a foreword by T. Eguchi and K. Nishijima.  Google Scholar

[19]

Classical Quantum Gravity, 30 (2013), 165010, 26 pp. doi: 10.1088/0264-9381/30/16/165010.  Google Scholar

[20]

Nuclear Phys., 61 (1973), 45-61. doi: 10.1016/0550-3213(73)90350-7.  Google Scholar

[21]

Manuscripta Math., 108 (2002), 217-273. doi: 10.1007/s002290200266.  Google Scholar

[22]

Progress in Nonlinear Differential Equations and their Applications, 70, Birkhäuser Boston Inc., Boston, MA, 2007.  Google Scholar

[23]

Comm. Partial Differential Equations, 35 (2010), 1029-1057. doi: 10.1080/03605301003717100.  Google Scholar

[24]

Comm. Math. Phys., 159 (1994), 51-91, URL http://projecteuclid.org/getRecord?id=euclid.cmp/1104254491. doi: 10.1007/BF02100485.  Google Scholar

[25]

Ann. Sci. École Norm. Sup. (4), 37 (2004), 312-362. doi: 10.1016/j.ansens.2003.07.001.  Google Scholar

[26]

Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1994.  Google Scholar

[27]

Arch. Ration. Mech. Anal., 201 (2011), 743-776. doi: 10.1007/s00205-011-0422-2.  Google Scholar

show all references

References:
[1]

J. Funct. Anal., 256 (2009), 2268-2290. doi: 10.1016/j.jfa.2008.09.020.  Google Scholar

[2]

Complex Anal. Oper. Theory, 4 (2010), 473-496. doi: 10.1007/s11785-010-0060-y.  Google Scholar

[3]

Phys. D, 239 (2010), 335-339. doi: 10.1016/j.physd.2009.12.004.  Google Scholar

[4]

J. Funct. Anal., 82 (1989), 259-295. doi: 10.1016/0022-1236(89)90071-2.  Google Scholar

[5]

The birth of string theory, Cambridge University Press, Cambridge, 2012. xxvi+636 pp.  Google Scholar

[6]

Progr. Theoret. Phys., 46 (1971), 1560-1569. doi: 10.1143/PTP.46.1560.  Google Scholar

[7]

Comm. Math. Phys., 212 (2000), 257-275. doi: 10.1007/PL00005526.  Google Scholar

[8]

Adv. Math., 199 (2006), 448-498. doi: 10.1016/j.aim.2005.05.017.  Google Scholar

[9]

Birkhäuser Boston, Mass., 1980, Structure of static gauge theories.  Google Scholar

[10]

SIAM J. Math. Anal., 30 (1999), 721-746 (electronic). doi: 10.1137/S0036141097300581.  Google Scholar

[11]

Calc. Var. Partial Differential Equations, 9 (1999), 1-30. doi: 10.1007/s005260050131.  Google Scholar

[12]

Anal. PDE, 4 (2011), 285-340. doi: 10.2140/apde.2011.4.285.  Google Scholar

[13]

R. Jerrard, M. Novaga and G. Orlandi, On the regularity of timelike extremal surfaces,, To appear, ().  doi: 10.1142/S0219199714500485.  Google Scholar

[14]

Comm. Partial Differential Equations, 22 (1997), 1161-1225.  Google Scholar

[15]

Journal of Physics A: Mathematical and General, 9 (1976), 1387. doi: 10.1088/0305-4470/9/8/029.  Google Scholar

[16]

Duke Math. J., 74 (1994), 19-44. doi: 10.1215/S0012-7094-94-07402-4.  Google Scholar

[17]

Comm. Pure Appl. Math., 52 (1999), 737-761. doi: 10.1002/(SICI)1097-0312(199906)52:6<737::AID-CPA3>3.0.CO;2-Y.  Google Scholar

[18]

World Scientific Publishing Co. Inc., River Edge, NJ, 1995, Selected papers of Y. Nambu, Edited and with a foreword by T. Eguchi and K. Nishijima.  Google Scholar

[19]

Classical Quantum Gravity, 30 (2013), 165010, 26 pp. doi: 10.1088/0264-9381/30/16/165010.  Google Scholar

[20]

Nuclear Phys., 61 (1973), 45-61. doi: 10.1016/0550-3213(73)90350-7.  Google Scholar

[21]

Manuscripta Math., 108 (2002), 217-273. doi: 10.1007/s002290200266.  Google Scholar

[22]

Progress in Nonlinear Differential Equations and their Applications, 70, Birkhäuser Boston Inc., Boston, MA, 2007.  Google Scholar

[23]

Comm. Partial Differential Equations, 35 (2010), 1029-1057. doi: 10.1080/03605301003717100.  Google Scholar

[24]

Comm. Math. Phys., 159 (1994), 51-91, URL http://projecteuclid.org/getRecord?id=euclid.cmp/1104254491. doi: 10.1007/BF02100485.  Google Scholar

[25]

Ann. Sci. École Norm. Sup. (4), 37 (2004), 312-362. doi: 10.1016/j.ansens.2003.07.001.  Google Scholar

[26]

Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge, 1994.  Google Scholar

[27]

Arch. Ration. Mech. Anal., 201 (2011), 743-776. doi: 10.1007/s00205-011-0422-2.  Google Scholar

[1]

V. Kumar Murty, Ying Zong. Splitting of abelian varieties. Advances in Mathematics of Communications, 2014, 8 (4) : 511-519. doi: 10.3934/amc.2014.8.511

[2]

Haibo Cui, Haiyan Yin. Convergence rate of solutions toward stationary solutions to the isentropic micropolar fluid model in a half line. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 2899-2920. doi: 10.3934/dcdsb.2020210

[3]

Lipeng Duan, Jun Yang. On the non-degeneracy of radial vortex solutions for a coupled Ginzburg-Landau system. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021056

[4]

Ahmad Mousavi, Zheming Gao, Lanshan Han, Alvin Lim. Quadratic surface support vector machine with L1 norm regularization. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021046

[5]

Youjun Deng, Hongyu Liu, Xianchao Wang, Dong Wei, Liyan Zhu. Simultaneous recovery of surface heat flux and thickness of a solid structure by ultrasonic measurements. Electronic Research Archive, , () : -. doi: 10.3934/era.2021027

[6]

Guido De Philippis, Antonio De Rosa, Jonas Hirsch. The area blow up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals. Discrete & Continuous Dynamical Systems, 2019, 39 (12) : 7031-7056. doi: 10.3934/dcds.2019243

[7]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[8]

Mengjie Zhang. Extremal functions for a class of trace Trudinger-Moser inequalities on a compact Riemann surface with smooth boundary. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021038

[9]

Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021030

[10]

Yohei Yamazaki. Center stable manifolds around line solitary waves of the Zakharov–Kuznetsov equation with critical speed. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3579-3614. doi: 10.3934/dcds.2021008

[11]

Zhisu Liu, Yicheng Liu, Xiang Li. Flocking and line-shaped spatial configuration to delayed Cucker-Smale models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3693-3716. doi: 10.3934/dcdsb.2020253

[12]

Jan Prüss, Laurent Pujo-Menjouet, G.F. Webb, Rico Zacher. Analysis of a model for the dynamics of prions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 225-235. doi: 10.3934/dcdsb.2006.6.225

[13]

Johannes Kellendonk, Lorenzo Sadun. Conjugacies of model sets. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 3805-3830. doi: 10.3934/dcds.2017161

[14]

Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101

[15]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[16]

Martin Bohner, Sabrina Streipert. Optimal harvesting policy for the Beverton--Holt model. Mathematical Biosciences & Engineering, 2016, 13 (4) : 673-695. doi: 10.3934/mbe.2016014

[17]

Juan Manuel Pastor, Javier García-Algarra, Javier Galeano, José María Iriondo, José J. Ramasco. A simple and bounded model of population dynamics for mutualistic networks. Networks & Heterogeneous Media, 2015, 10 (1) : 53-70. doi: 10.3934/nhm.2015.10.53

[18]

Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973

[19]

Michael Grinfeld, Amy Novick-Cohen. Some remarks on stability for a phase field model with memory. Discrete & Continuous Dynamical Systems, 2006, 15 (4) : 1089-1117. doi: 10.3934/dcds.2006.15.1089

[20]

Alba Málaga Sabogal, Serge Troubetzkoy. Minimality of the Ehrenfest wind-tree model. Journal of Modern Dynamics, 2016, 10: 209-228. doi: 10.3934/jmd.2016.10.209

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (49)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]