May  2015, 35(5): 1969-2009. doi: 10.3934/dcds.2015.35.1969

Integrability of potentials of degree $k \neq \pm 2$. Second order variational equations between Kolchin solvability and Abelianity

1. 

Laboratoire de Mathématiques et d'Informatique (LMI), INSA de Rouen, Avenue de l'Université, 76 801 Saint Etienne du Rouvray Cedex

2. 

Institute of Astronomy, University of Zielona Góra, Licealna 9, PL-65-417, Zielona Góra, Poland

Received  January 2013 Revised  September 2014 Published  December 2014

In our previous paper [4], we tried to extract some particular structures of the higher variational equations (the $\mathrm{VE}_p$ for $p \geq 2$), along particular solutions of natural Hamiltonian systems with homogeneous potential of degree $k=\pm 2$. We investigate these variational equations in a framework of differential Galois theory. Our aim was to obtain new obstructions for complete integrability. In this paper we extend results of [4] to the complementary cases, when the homogeneous potential has integer degree of homogeneity $k\in\mathbb{Z}$, and $|k| \geq 3$. Since these cases are much more general and complicated, we restrict our study only to the second order variational equation $\mathrm{VE}_2$.
Citation: Guillaume Duval, Andrzej J. Maciejewski. Integrability of potentials of degree $k \neq \pm 2$. Second order variational equations between Kolchin solvability and Abelianity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1969-2009. doi: 10.3934/dcds.2015.35.1969
References:
[1]

A. Aparicio Monforte and J.-A. Weil, A reduction method for higher order variational equations of Hamiltonian systems,, In Symmetries and related topics in differential and difference equations, 549 (2011), 1. doi: 10.1090/conm/549/10850. Google Scholar

[2]

T. Combot, Non-integrability of the equal mass; n-body problem with non-zero angular momentum,, Celestial Mechanics and Dynamical Astronomy, 114 (2012), 319. doi: 10.1007/s10569-012-9417-z. Google Scholar

[3]

G. Duval and A. J. Maciejewski, Jordan obstruction to the integrability of Hamiltonian systems with homogeneous potentials,, Annales de l'Institut Fourier, 59 (2009), 2839. doi: 10.5802/aif.2510. Google Scholar

[4]

G. Duval and A. J. Maciejewski, Integrability of Homogeneous potential of degree $k = \pm 2$. An application of higher variational equations,, submited, (2012). Google Scholar

[5]

J. J. Morales-Ruiz and J. P. Ramis, A note on the non-integrability of some Hamiltonian systems with a homogeneous potential,, Methods Appl. Anal., 8 (2001), 113. Google Scholar

[6]

E. G. C. Poole, Introduction to the Theory of Linear Differential Equations,, Dover Publications Inc., (1960). Google Scholar

show all references

References:
[1]

A. Aparicio Monforte and J.-A. Weil, A reduction method for higher order variational equations of Hamiltonian systems,, In Symmetries and related topics in differential and difference equations, 549 (2011), 1. doi: 10.1090/conm/549/10850. Google Scholar

[2]

T. Combot, Non-integrability of the equal mass; n-body problem with non-zero angular momentum,, Celestial Mechanics and Dynamical Astronomy, 114 (2012), 319. doi: 10.1007/s10569-012-9417-z. Google Scholar

[3]

G. Duval and A. J. Maciejewski, Jordan obstruction to the integrability of Hamiltonian systems with homogeneous potentials,, Annales de l'Institut Fourier, 59 (2009), 2839. doi: 10.5802/aif.2510. Google Scholar

[4]

G. Duval and A. J. Maciejewski, Integrability of Homogeneous potential of degree $k = \pm 2$. An application of higher variational equations,, submited, (2012). Google Scholar

[5]

J. J. Morales-Ruiz and J. P. Ramis, A note on the non-integrability of some Hamiltonian systems with a homogeneous potential,, Methods Appl. Anal., 8 (2001), 113. Google Scholar

[6]

E. G. C. Poole, Introduction to the Theory of Linear Differential Equations,, Dover Publications Inc., (1960). Google Scholar

[1]

Guillaume Duval, Andrzej J. Maciejewski. Integrability of Hamiltonian systems with homogeneous potentials of degrees $\pm 2$. An application of higher order variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4589-4615. doi: 10.3934/dcds.2014.34.4589

[2]

Regina Martínez, Carles Simó. Non-integrability of the degenerate cases of the Swinging Atwood's Machine using higher order variational equations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 1-24. doi: 10.3934/dcds.2011.29.1

[3]

Mitsuru Shibayama. Non-integrability criterion for homogeneous Hamiltonian systems via blowing-up technique of singularities. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3707-3719. doi: 10.3934/dcds.2015.35.3707

[4]

Delia Schiera. Existence and non-existence results for variational higher order elliptic systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5145-5161. doi: 10.3934/dcds.2018227

[5]

Anthony Bloch, Leonardo Colombo, Fernando Jiménez. The variational discretization of the constrained higher-order Lagrange-Poincaré equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 309-344. doi: 10.3934/dcds.2019013

[6]

Dung Le. Higher integrability for gradients of solutions to degenerate parabolic systems. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 597-608. doi: 10.3934/dcds.2010.26.597

[7]

Sergi Simon. Linearised higher variational equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4827-4854. doi: 10.3934/dcds.2014.34.4827

[8]

Baruch Cahlon. Sufficient conditions for oscillations of higher order neutral delay differential equations. Conference Publications, 1998, 1998 (Special) : 124-137. doi: 10.3934/proc.1998.1998.124

[9]

R.S. Dahiya, A. Zafer. Oscillation theorems of higher order neutral type differential equations. Conference Publications, 1998, 1998 (Special) : 203-219. doi: 10.3934/proc.1998.1998.203

[10]

Kazuyuki Yagasaki. Higher-order Melnikov method and chaos for two-degree-of-freedom Hamiltonian systems with saddle-centers. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 387-402. doi: 10.3934/dcds.2011.29.387

[11]

Jaume Llibre, Claudia Valls. On the analytic integrability of the Liénard analytic differential systems. Discrete & Continuous Dynamical Systems - B, 2016, 21 (2) : 557-573. doi: 10.3934/dcdsb.2016.21.557

[12]

Jaume Llibre, Claudia Valls. Analytic integrability of a class of planar polynomial differential systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2657-2661. doi: 10.3934/dcdsb.2015.20.2657

[13]

Eduardo Martínez. Higher-order variational calculus on Lie algebroids. Journal of Geometric Mechanics, 2015, 7 (1) : 81-108. doi: 10.3934/jgm.2015.7.81

[14]

Chiara Leone, Anna Verde, Giovanni Pisante. Higher integrability results for non smooth parabolic systems: The subquadratic case. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 177-190. doi: 10.3934/dcdsb.2009.11.177

[15]

Ugur G. Abdulla. On the optimal control of the free boundary problems for the second order parabolic equations. II. Convergence of the method of finite differences. Inverse Problems & Imaging, 2016, 10 (4) : 869-898. doi: 10.3934/ipi.2016025

[16]

Mohamed Assellaou, Olivier Bokanowski, Hasnaa Zidani. Error estimates for second order Hamilton-Jacobi-Bellman equations. Approximation of probabilistic reachable sets. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 3933-3964. doi: 10.3934/dcds.2015.35.3933

[17]

Angelo Favini, Yakov Yakubov. Regular boundary value problems for ordinary differential-operator equations of higher order in UMD Banach spaces. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 595-614. doi: 10.3934/dcdss.2011.4.595

[18]

Mohammed Al Horani, Angelo Favini. Inverse problems for singular differential-operator equations with higher order polar singularities. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 2159-2168. doi: 10.3934/dcdsb.2014.19.2159

[19]

Yanfei Lu, Qingfei Yin, Hongyi Li, Hongli Sun, Yunlei Yang, Muzhou Hou. Solving higher order nonlinear ordinary differential equations with least squares support vector machines. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-22. doi: 10.3934/jimo.2019012

[20]

Yulin Zhao, Siming Zhu. Higher order Melnikov function for a quartic hamiltonian with cuspidal loop. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 995-1018. doi: 10.3934/dcds.2002.8.995

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]