May  2015, 35(5): 2041-2051. doi: 10.3934/dcds.2015.35.2041

Blow-up for the two-component Camassa--Holm system

1. 

Department of Mathematical Sciences, Norwegian University of Science and Technology, NO-7491 Trondheim

Received  June 2014 Revised  August 2014 Published  December 2014

Following conservative solutions of the two-component Camassa--Holm system $u_t-u_{txx}+3uu_x-2u_xu_{xx}-uu_{xxx}+\rho\rho_x=0$, $\rho_t+(u\rho)_x=0$ along characteristics, we determine if wave breaking occurs in the nearby future or not, for initial data $u_0\in H^1(\mathbb{R})$ and $\rho_0\in L^2(\mathbb{R})$.
Citation: Katrin Grunert. Blow-up for the two-component Camassa--Holm system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2041-2051. doi: 10.3934/dcds.2015.35.2041
References:
[1]

L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems,, Clarendon Press, (2000). Google Scholar

[2]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation,, Arch. Ration. Mech. Anal., 183 (2007), 215. doi: 10.1007/s00205-006-0010-z. Google Scholar

[3]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Analysis and Applications, 5 (2007), 1. doi: 10.1142/S0219530507000857. Google Scholar

[4]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661. doi: 10.1103/PhysRevLett.71.1661. Google Scholar

[5]

R. M. Chen and Y. Liu, Wave breaking and global existence for a generalized two-component Camassa-Holm system,, Inter. Math Research Notices, (2011), 1381. doi: 10.1093/imrn/rnq118. Google Scholar

[6]

A. Constantin and R. I. Ivanov, On an integrable two-component Camassa-Holm shallow water system,, Physics Letters A, 372 (2008), 7129. doi: 10.1016/j.physleta.2008.10.050. Google Scholar

[7]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Ration. Mech. Anal., 192 (2009), 165. doi: 10.1007/s00205-008-0128-2. Google Scholar

[8]

J. Escher, O. Lechtenfeld and Z. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation,, Discrete Contin. Dyn. Syst., 19 (2007), 493. doi: 10.3934/dcds.2007.19.493. Google Scholar

[9]

Y. Fu and C. Qu, Well posedness and blow-up solution for a new coupled Camassa-Holm equations with peakons,, J. Math. Phys., 50 (2009). doi: 10.1063/1.3064810. Google Scholar

[10]

K. Grunert, H. Holden and X. Raynaud, Global solutions for the two-component Camassa-Holm system,, Comm. Partial Differential Equations, 37 (2012), 2245. doi: 10.1080/03605302.2012.683505. Google Scholar

[11]

K. Grunert, H. Holden and X. Raynaud, Global dissipative solutions of the two-component Camassa-Holm system for initial data with nonvanishing asymptotics,, Nonlinear Anal. Real World Appl., 17 (2014), 203. doi: 10.1016/j.nonrwa.2013.12.001. Google Scholar

[12]

K. Grunert, H. Holden and X. Raynaud, A continuous interpolation between conservative and dissipative solutions for the Camassa-Holm system,, , (). Google Scholar

[13]

C. Guan, K. H. Karlsen and Z. Yin, Well-posedness and blow-up phenomena for a modified two-component Camassa-Holm equation,, in Nonlinear Partial Differential Equations and Hyperbolic Wave Phenomena (eds. H. Holden and K. H. Karlsen), 526 (2010), 199. doi: 10.1090/conm/526/10382. Google Scholar

[14]

C. Guan and Z. Yin, Global weak solutions for a modified two-component Camassa-Holm equation,, Ann. I. H. Poincaré - AN, 28 (2011), 623. doi: 10.1016/j.anihpc.2011.04.003. Google Scholar

[15]

C. Guan and Z. Yin, Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system,, J. Differential Equations, 248 (2010), 2003. doi: 10.1016/j.jde.2009.08.002. Google Scholar

[16]

G. Gui and Y. Liu, On the global existence and wave-breaking criteria for the two-component Camassa-Holm system,, J. Funct. Anal., 258 (2010), 4251. doi: 10.1016/j.jfa.2010.02.008. Google Scholar

[17]

G. Gui and Y. Liu, On the Cauchy problem for the two-component Camassa-Holm system,, Math. Z., 268 (2011), 45. doi: 10.1007/s00209-009-0660-2. Google Scholar

[18]

Z. Guo and Y. Zhou, On solutions to a two-component generalized Camassa-Holm equation,, Stud. Appl. Math., 124 (2010), 307. doi: 10.1111/j.1467-9590.2009.00472.x. Google Scholar

[19]

D. Henry, Infnite propagation speed for a two-component Camassa-Holm equation,, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 597. doi: 10.3934/dcdsb.2009.12.597. Google Scholar

[20]

H. Holden and X. Raynaud, Global conservative solutions for the Camassa-Holm equation - a Lagrangian point of view,, Comm. Partial Differential Equations, 32 (2007), 1511. doi: 10.1080/03605300601088674. Google Scholar

[21]

H. Holden and X. Raynaud, Dissipative solutions for the Camassa-Holm equation,, Discrete Contin. Dyn. Syst., 24 (2009), 1047. doi: 10.3934/dcds.2009.24.1047. Google Scholar

[22]

Q. Hu, Global existence and blow-up phenomena for a weakly dissipative 2-component Camassa-Holm system,, Applicable Analysis, 92 (2013), 398. doi: 10.1080/00036811.2011.621893. Google Scholar

[23]

P. A. Kuz'min, Two-component generalizations of the Camassa-Holm equation,, Math. Notes, 81 (2007), 130. doi: 10.1134/S0001434607010142. Google Scholar

[24]

W. Tan and Z. Yin, Global dissipative solutions of a modified two-component Camassa-Holm shallow water system,, J. Math. Phys., 52 (2011). doi: 10.1063/1.3562928. Google Scholar

[25]

M. Yuen, Perturbational blowup solutions to the 2-component Camassa-Holm equations,, J. Math. Anal. Appl., 390 (2012), 596. doi: 10.1016/j.jmaa.2011.05.016. Google Scholar

[26]

P. Zhang and Y. Liu, Stability of solitary waves and wave-breaking phenomena for the two-component Camassa-Holm system,, Int. Math. Res. Not. IMRN, 11 (2010), 1981. doi: 10.1093/imrn/rnp211. Google Scholar

show all references

References:
[1]

L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems,, Clarendon Press, (2000). Google Scholar

[2]

A. Bressan and A. Constantin, Global conservative solutions of the Camassa-Holm equation,, Arch. Ration. Mech. Anal., 183 (2007), 215. doi: 10.1007/s00205-006-0010-z. Google Scholar

[3]

A. Bressan and A. Constantin, Global dissipative solutions of the Camassa-Holm equation,, Analysis and Applications, 5 (2007), 1. doi: 10.1142/S0219530507000857. Google Scholar

[4]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661. doi: 10.1103/PhysRevLett.71.1661. Google Scholar

[5]

R. M. Chen and Y. Liu, Wave breaking and global existence for a generalized two-component Camassa-Holm system,, Inter. Math Research Notices, (2011), 1381. doi: 10.1093/imrn/rnq118. Google Scholar

[6]

A. Constantin and R. I. Ivanov, On an integrable two-component Camassa-Holm shallow water system,, Physics Letters A, 372 (2008), 7129. doi: 10.1016/j.physleta.2008.10.050. Google Scholar

[7]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations,, Arch. Ration. Mech. Anal., 192 (2009), 165. doi: 10.1007/s00205-008-0128-2. Google Scholar

[8]

J. Escher, O. Lechtenfeld and Z. Yin, Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation,, Discrete Contin. Dyn. Syst., 19 (2007), 493. doi: 10.3934/dcds.2007.19.493. Google Scholar

[9]

Y. Fu and C. Qu, Well posedness and blow-up solution for a new coupled Camassa-Holm equations with peakons,, J. Math. Phys., 50 (2009). doi: 10.1063/1.3064810. Google Scholar

[10]

K. Grunert, H. Holden and X. Raynaud, Global solutions for the two-component Camassa-Holm system,, Comm. Partial Differential Equations, 37 (2012), 2245. doi: 10.1080/03605302.2012.683505. Google Scholar

[11]

K. Grunert, H. Holden and X. Raynaud, Global dissipative solutions of the two-component Camassa-Holm system for initial data with nonvanishing asymptotics,, Nonlinear Anal. Real World Appl., 17 (2014), 203. doi: 10.1016/j.nonrwa.2013.12.001. Google Scholar

[12]

K. Grunert, H. Holden and X. Raynaud, A continuous interpolation between conservative and dissipative solutions for the Camassa-Holm system,, , (). Google Scholar

[13]

C. Guan, K. H. Karlsen and Z. Yin, Well-posedness and blow-up phenomena for a modified two-component Camassa-Holm equation,, in Nonlinear Partial Differential Equations and Hyperbolic Wave Phenomena (eds. H. Holden and K. H. Karlsen), 526 (2010), 199. doi: 10.1090/conm/526/10382. Google Scholar

[14]

C. Guan and Z. Yin, Global weak solutions for a modified two-component Camassa-Holm equation,, Ann. I. H. Poincaré - AN, 28 (2011), 623. doi: 10.1016/j.anihpc.2011.04.003. Google Scholar

[15]

C. Guan and Z. Yin, Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system,, J. Differential Equations, 248 (2010), 2003. doi: 10.1016/j.jde.2009.08.002. Google Scholar

[16]

G. Gui and Y. Liu, On the global existence and wave-breaking criteria for the two-component Camassa-Holm system,, J. Funct. Anal., 258 (2010), 4251. doi: 10.1016/j.jfa.2010.02.008. Google Scholar

[17]

G. Gui and Y. Liu, On the Cauchy problem for the two-component Camassa-Holm system,, Math. Z., 268 (2011), 45. doi: 10.1007/s00209-009-0660-2. Google Scholar

[18]

Z. Guo and Y. Zhou, On solutions to a two-component generalized Camassa-Holm equation,, Stud. Appl. Math., 124 (2010), 307. doi: 10.1111/j.1467-9590.2009.00472.x. Google Scholar

[19]

D. Henry, Infnite propagation speed for a two-component Camassa-Holm equation,, Discrete Contin. Dyn. Syst. Ser. B, 12 (2009), 597. doi: 10.3934/dcdsb.2009.12.597. Google Scholar

[20]

H. Holden and X. Raynaud, Global conservative solutions for the Camassa-Holm equation - a Lagrangian point of view,, Comm. Partial Differential Equations, 32 (2007), 1511. doi: 10.1080/03605300601088674. Google Scholar

[21]

H. Holden and X. Raynaud, Dissipative solutions for the Camassa-Holm equation,, Discrete Contin. Dyn. Syst., 24 (2009), 1047. doi: 10.3934/dcds.2009.24.1047. Google Scholar

[22]

Q. Hu, Global existence and blow-up phenomena for a weakly dissipative 2-component Camassa-Holm system,, Applicable Analysis, 92 (2013), 398. doi: 10.1080/00036811.2011.621893. Google Scholar

[23]

P. A. Kuz'min, Two-component generalizations of the Camassa-Holm equation,, Math. Notes, 81 (2007), 130. doi: 10.1134/S0001434607010142. Google Scholar

[24]

W. Tan and Z. Yin, Global dissipative solutions of a modified two-component Camassa-Holm shallow water system,, J. Math. Phys., 52 (2011). doi: 10.1063/1.3562928. Google Scholar

[25]

M. Yuen, Perturbational blowup solutions to the 2-component Camassa-Holm equations,, J. Math. Anal. Appl., 390 (2012), 596. doi: 10.1016/j.jmaa.2011.05.016. Google Scholar

[26]

P. Zhang and Y. Liu, Stability of solitary waves and wave-breaking phenomena for the two-component Camassa-Holm system,, Int. Math. Res. Not. IMRN, 11 (2010), 1981. doi: 10.1093/imrn/rnp211. Google Scholar

[1]

Lei Zhang, Bin Liu. Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2655-2685. doi: 10.3934/dcds.2018112

[2]

Qiaoyi Hu, Zhijun Qiao. Persistence properties and unique continuation for a dispersionless two-component Camassa-Holm system with peakon and weak kink solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2613-2625. doi: 10.3934/dcds.2016.36.2613

[3]

Caixia Chen, Shu Wen. Wave breaking phenomena and global solutions for a generalized periodic two-component Camassa-Holm system. Discrete & Continuous Dynamical Systems - A, 2012, 32 (10) : 3459-3484. doi: 10.3934/dcds.2012.32.3459

[4]

Kai Yan, Zhaoyang Yin. Well-posedness for a modified two-component Camassa-Holm system in critical spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1699-1712. doi: 10.3934/dcds.2013.33.1699

[5]

Zeng Zhang, Zhaoyang Yin. Global existence for a two-component Camassa-Holm system with an arbitrary smooth function. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5523-5536. doi: 10.3934/dcds.2018243

[6]

Xiuting Li, Lei Zhang. The Cauchy problem and blow-up phenomena for a new integrable two-component peakon system with cubic nonlinearities. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3301-3325. doi: 10.3934/dcds.2017140

[7]

Vural Bayrak, Emil Novruzov, Ibrahim Ozkol. Local-in-space blow-up criteria for two-component nonlinear dispersive wave system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 6023-6037. doi: 10.3934/dcds.2019263

[8]

Yong Chen, Hongjun Gao, Yue Liu. On the Cauchy problem for the two-component Dullin-Gottwald-Holm system. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3407-3441. doi: 10.3934/dcds.2013.33.3407

[9]

Min Zhu, Shuanghu Zhang. On the blow-up of solutions to the periodic modified integrable Camassa--Holm equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2347-2364. doi: 10.3934/dcds.2016.36.2347

[10]

Joachim Escher, Tony Lyons. Two-component higher order Camassa-Holm systems with fractional inertia operator: A geometric approach. Journal of Geometric Mechanics, 2015, 7 (3) : 281-293. doi: 10.3934/jgm.2015.7.281

[11]

Xinglong Wu. On the Cauchy problem of a three-component Camassa--Holm equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2827-2854. doi: 10.3934/dcds.2016.36.2827

[12]

Chenghua Wang, Rong Zeng, Shouming Zhou, Bin Wang, Chunlai Mu. Continuity for the rotation-two-component Camassa-Holm system. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6633-6652. doi: 10.3934/dcdsb.2019160

[13]

Joachim Escher, Olaf Lechtenfeld, Zhaoyang Yin. Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 493-513. doi: 10.3934/dcds.2007.19.493

[14]

Xinglong Wu, Boling Guo. Persistence properties and infinite propagation for the modified 2-component Camassa--Holm equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 3211-3223. doi: 10.3934/dcds.2013.33.3211

[15]

Ying Fu, Changzheng Qu, Yichen Ma. Well-posedness and blow-up phenomena for the interacting system of the Camassa-Holm and Degasperis-Procesi equations. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1025-1035. doi: 10.3934/dcds.2010.27.1025

[16]

David Henry. Infinite propagation speed for a two component Camassa-Holm equation. Discrete & Continuous Dynamical Systems - B, 2009, 12 (3) : 597-606. doi: 10.3934/dcdsb.2009.12.597

[17]

Zeng Zhang, Zhaoyang Yin. On the Cauchy problem for a four-component Camassa-Holm type system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5153-5169. doi: 10.3934/dcds.2015.35.5153

[18]

Katrin Grunert, Helge Holden, Xavier Raynaud. Lipschitz metric for the Camassa--Holm equation on the line. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2809-2827. doi: 10.3934/dcds.2013.33.2809

[19]

Kai Yan, Zhijun Qiao, Yufeng Zhang. On a new two-component $b$-family peakon system with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5415-5442. doi: 10.3934/dcds.2018239

[20]

Helge Holden, Xavier Raynaud. A convergent numerical scheme for the Camassa--Holm equation based on multipeakons. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 505-523. doi: 10.3934/dcds.2006.14.505

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]