• Previous Article
    Self-trapping and Josephson tunneling solutions to the nonlinear Schrödinger / Gross-Pitaevskii equation
  • DCDS Home
  • This Issue
  • Next Article
    Small-divisor equation with large-variable coefficient and periodic solutions of DNLS equations
January  2015, 35(1): 205-224. doi: 10.3934/dcds.2015.35.205

Parametric normal forms for Bogdanov--Takens singularity; the generalized saddle-node case

1. 

Department of Mathematical Sciences, Isfahan University of Technology, Isfahan 84156-83111, Iran, Iran

Received  May 2013 Revised  June 2014 Published  August 2014

We obtain a parametric (and an orbital) normal form for any non-degenerate perturbation of the generalized saddle-node case of Bogdanov--Takens singularity. Explicit formulas are derived and greatly simplified for an efficient implementation in any computer algebra system. A Maple program is prepared for an automatic parametric normal form computation. A section is devoted to present some practical formulas which avoid technical details of the paper.
Citation: Majid Gazor, Mojtaba Moazeni. Parametric normal forms for Bogdanov--Takens singularity; the generalized saddle-node case. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 205-224. doi: 10.3934/dcds.2015.35.205
References:
[1]

A. Algaba, E. Freire, E. Gamero and C. Garcia, Quasi-homogeneous normal forms,, J. Comp. and Appl. Math., 150 (2003), 193.  doi: 10.1016/S0377-0427(02)00660-X.  Google Scholar

[2]

A. Baider and R. C. Churchill, Unique normal forms for planar vector fields,, Math. Z., 199 (1988), 303.  doi: 10.1007/BF01159780.  Google Scholar

[3]

A. Baider and J. A. Sanders, Unique normal forms: The nilpotent Hamiltonian case,, J. Differential Equations, 92 (1991), 282.  doi: 10.1016/0022-0396(91)90050-J.  Google Scholar

[4]

A. Baider and J. A. Sanders, Further reductions of the Takens-Bogdanov normal form,, J. Differential Equations, 99 (1992), 205.  doi: 10.1016/0022-0396(92)90022-F.  Google Scholar

[5]

G. Chen and J. D. Dora, Further reductions of normal forms for dynamical systems,, J. Differential Equations, 166 (2000), 79.  doi: 10.1006/jdeq.2000.3783.  Google Scholar

[6]

G. Chen, D. Wang and X. Wang, Unique normal forms for nilpotent planar vector fields,, Internat. J. Bifur. Chaos, 12 (2002), 2159.  doi: 10.1142/S0218127402005741.  Google Scholar

[7]

M. Gazor and F. Mokhtari, Normal forms of Hopf-Zero singularity,, preprint, ().   Google Scholar

[8]

M. Gazor and F. Mokhtari, Volume-preserving normal forms of Hopf-Zero singularity,, Nonlinearity, 26 (2013), 2809.  doi: 10.1088/0951-7715/26/10/2809.  Google Scholar

[9]

M. Gazor, F. Mokhtari and J. A. Sanders, Normal forms for Hopf-Zero singularities with nonconservative nonlinear part,, J. Differential Equations, 254 (2013), 1571.  doi: 10.1016/j.jde.2012.11.004.  Google Scholar

[10]

M. Gazor and P. Yu, Spectral sequences and parametric normal forms,, J. Differential Equations, 252 (2012), 1003.  doi: 10.1016/j.jde.2011.09.043.  Google Scholar

[11]

M. Gazor and P. Yu, Formal decomposition method and parametric normal forms,, Internat. J. Bifur. Chaos, 20 (2010), 3487.  doi: 10.1142/S0218127410027830.  Google Scholar

[12]

M. Gazor and P. Yu, Infinite order parametric normal form of Hopf singularity,, Internat. J. Bifur. Chaos, 18 (2008), 3393.  doi: 10.1142/S0218127408022445.  Google Scholar

[13]

H. Kokubu, H. Oka and D. Wang, Linear grading function and further reduction of normal forms,, J. Differential Equations, 132 (1996), 293.  doi: 10.1006/jdeq.1996.0181.  Google Scholar

[14]

M. Moazeni, Asymptotic Unfoldings and Normal Forms of the Generalized Saddle-Node case of Bogdanov-Takens Singularity,, Master Thesis (in persian), (2011).   Google Scholar

[15]

J. Murdock, Asymptotic unfoldings of dynamical systems by normalizing beyond the normal form,, J. Differential Equations, 143 (1998), 151.  doi: 10.1006/jdeq.1997.3368.  Google Scholar

[16]

J. Murdock, Normal Forms and Unfoldings for Local Dynamical Systems,, Springer, (2003).  doi: 10.1007/b97515.  Google Scholar

[17]

J. Murdock, Hypernormal form theory: Foundations and algorithms,, J. Differential Equations, 205 (2004), 424.  doi: 10.1016/j.jde.2004.02.015.  Google Scholar

[18]

J. Murdock and D. Malonza, An improved theory of asymtotic unfoldings,, J. Differential Equations, 247 (2009), 685.  doi: 10.1016/j.jde.2009.04.014.  Google Scholar

[19]

J. Peng and D. Wang, A suffiecient condition for the uniqueness of normal forms and unique normal forms of generalized Hopf singularities,, Internat. J. Bifur. Chaos, 14 (2004), 3337.  doi: 10.1142/S0218127404011247.  Google Scholar

[20]

E. Stróżyna, The analytic and formal normal form for the nilpotent singularity. The case of generalized saddle-node,, Bull. Sci. Math., 126 (2002), 555.  doi: 10.1016/S0007-4497(02)01127-2.  Google Scholar

[21]

E. Stróżyna and H. Żoladek, The complete formal normal form for the Bogdanov-Takens singularity,, preprint, (2013).   Google Scholar

[22]

E. Stróżyna and H. Żoladek, Divergence of the reduction to the multidimensional nilpotent Takens normal form,, Nonlinearity, 24 (2011), 3129.  doi: 10.1088/0951-7715/24/11/007.  Google Scholar

[23]

E. Stróżyna and H. Żoladek, The analytic and formal normal form for the nilpotent singularity,, J. Differential Equations, 179 (2002), 479.  doi: 10.1006/jdeq.2001.4043.  Google Scholar

[24]

E. Stróżyna and H. Żoladek, Orbital formal normal forms for general Bogdanov-Takens singularity,, J. Differential Equations, 193 (2003), 239.  doi: 10.1016/S0022-0396(03)00137-2.  Google Scholar

[25]

D. Wang, J. Li, M. Huang and Y. Jiang, Unique normal form of Bogdanos-Takens singularities,, J. Differential Equations, 163 (2000), 223.  doi: 10.1006/jdeq.1999.3739.  Google Scholar

[26]

J. Li, L. Zhang and D. Wang, Unique normal form of a class of 3 dimensional vector fields with symmetries,, J. Differential Equations, 257 (2014), 2341.  doi: 10.1016/j.jde.2014.05.039.  Google Scholar

[27]

P. Yu, Computation of the simplest normal forms with perturbation parameters based on Lie transform and rescaling,, J. Comp. and App. Math., 144 (2002), 359.  doi: 10.1016/S0377-0427(01)00573-8.  Google Scholar

[28]

P. Yu and Y. Yuan, A matching pursuit technique for computing the simplest normal forms of vector fields,, J. Symbolic Computation, 35 (2003), 591.  doi: 10.1016/S0747-7171(03)00021-X.  Google Scholar

[29]

Y. Yuan and P. Yu, Computation of simplest normal forms of differential equations associated with a double-zero eigenvalues,, Internat. J. Bifur. Chaos, 11 (2001), 1307.  doi: 10.1142/S0218127401002742.  Google Scholar

[30]

P. Yu and A. Y. T. Leung, The simplest normal form of Hopf bifurcation,, Nonlinearity, 16 (2003), 277.  doi: 10.1088/0951-7715/16/1/317.  Google Scholar

show all references

References:
[1]

A. Algaba, E. Freire, E. Gamero and C. Garcia, Quasi-homogeneous normal forms,, J. Comp. and Appl. Math., 150 (2003), 193.  doi: 10.1016/S0377-0427(02)00660-X.  Google Scholar

[2]

A. Baider and R. C. Churchill, Unique normal forms for planar vector fields,, Math. Z., 199 (1988), 303.  doi: 10.1007/BF01159780.  Google Scholar

[3]

A. Baider and J. A. Sanders, Unique normal forms: The nilpotent Hamiltonian case,, J. Differential Equations, 92 (1991), 282.  doi: 10.1016/0022-0396(91)90050-J.  Google Scholar

[4]

A. Baider and J. A. Sanders, Further reductions of the Takens-Bogdanov normal form,, J. Differential Equations, 99 (1992), 205.  doi: 10.1016/0022-0396(92)90022-F.  Google Scholar

[5]

G. Chen and J. D. Dora, Further reductions of normal forms for dynamical systems,, J. Differential Equations, 166 (2000), 79.  doi: 10.1006/jdeq.2000.3783.  Google Scholar

[6]

G. Chen, D. Wang and X. Wang, Unique normal forms for nilpotent planar vector fields,, Internat. J. Bifur. Chaos, 12 (2002), 2159.  doi: 10.1142/S0218127402005741.  Google Scholar

[7]

M. Gazor and F. Mokhtari, Normal forms of Hopf-Zero singularity,, preprint, ().   Google Scholar

[8]

M. Gazor and F. Mokhtari, Volume-preserving normal forms of Hopf-Zero singularity,, Nonlinearity, 26 (2013), 2809.  doi: 10.1088/0951-7715/26/10/2809.  Google Scholar

[9]

M. Gazor, F. Mokhtari and J. A. Sanders, Normal forms for Hopf-Zero singularities with nonconservative nonlinear part,, J. Differential Equations, 254 (2013), 1571.  doi: 10.1016/j.jde.2012.11.004.  Google Scholar

[10]

M. Gazor and P. Yu, Spectral sequences and parametric normal forms,, J. Differential Equations, 252 (2012), 1003.  doi: 10.1016/j.jde.2011.09.043.  Google Scholar

[11]

M. Gazor and P. Yu, Formal decomposition method and parametric normal forms,, Internat. J. Bifur. Chaos, 20 (2010), 3487.  doi: 10.1142/S0218127410027830.  Google Scholar

[12]

M. Gazor and P. Yu, Infinite order parametric normal form of Hopf singularity,, Internat. J. Bifur. Chaos, 18 (2008), 3393.  doi: 10.1142/S0218127408022445.  Google Scholar

[13]

H. Kokubu, H. Oka and D. Wang, Linear grading function and further reduction of normal forms,, J. Differential Equations, 132 (1996), 293.  doi: 10.1006/jdeq.1996.0181.  Google Scholar

[14]

M. Moazeni, Asymptotic Unfoldings and Normal Forms of the Generalized Saddle-Node case of Bogdanov-Takens Singularity,, Master Thesis (in persian), (2011).   Google Scholar

[15]

J. Murdock, Asymptotic unfoldings of dynamical systems by normalizing beyond the normal form,, J. Differential Equations, 143 (1998), 151.  doi: 10.1006/jdeq.1997.3368.  Google Scholar

[16]

J. Murdock, Normal Forms and Unfoldings for Local Dynamical Systems,, Springer, (2003).  doi: 10.1007/b97515.  Google Scholar

[17]

J. Murdock, Hypernormal form theory: Foundations and algorithms,, J. Differential Equations, 205 (2004), 424.  doi: 10.1016/j.jde.2004.02.015.  Google Scholar

[18]

J. Murdock and D. Malonza, An improved theory of asymtotic unfoldings,, J. Differential Equations, 247 (2009), 685.  doi: 10.1016/j.jde.2009.04.014.  Google Scholar

[19]

J. Peng and D. Wang, A suffiecient condition for the uniqueness of normal forms and unique normal forms of generalized Hopf singularities,, Internat. J. Bifur. Chaos, 14 (2004), 3337.  doi: 10.1142/S0218127404011247.  Google Scholar

[20]

E. Stróżyna, The analytic and formal normal form for the nilpotent singularity. The case of generalized saddle-node,, Bull. Sci. Math., 126 (2002), 555.  doi: 10.1016/S0007-4497(02)01127-2.  Google Scholar

[21]

E. Stróżyna and H. Żoladek, The complete formal normal form for the Bogdanov-Takens singularity,, preprint, (2013).   Google Scholar

[22]

E. Stróżyna and H. Żoladek, Divergence of the reduction to the multidimensional nilpotent Takens normal form,, Nonlinearity, 24 (2011), 3129.  doi: 10.1088/0951-7715/24/11/007.  Google Scholar

[23]

E. Stróżyna and H. Żoladek, The analytic and formal normal form for the nilpotent singularity,, J. Differential Equations, 179 (2002), 479.  doi: 10.1006/jdeq.2001.4043.  Google Scholar

[24]

E. Stróżyna and H. Żoladek, Orbital formal normal forms for general Bogdanov-Takens singularity,, J. Differential Equations, 193 (2003), 239.  doi: 10.1016/S0022-0396(03)00137-2.  Google Scholar

[25]

D. Wang, J. Li, M. Huang and Y. Jiang, Unique normal form of Bogdanos-Takens singularities,, J. Differential Equations, 163 (2000), 223.  doi: 10.1006/jdeq.1999.3739.  Google Scholar

[26]

J. Li, L. Zhang and D. Wang, Unique normal form of a class of 3 dimensional vector fields with symmetries,, J. Differential Equations, 257 (2014), 2341.  doi: 10.1016/j.jde.2014.05.039.  Google Scholar

[27]

P. Yu, Computation of the simplest normal forms with perturbation parameters based on Lie transform and rescaling,, J. Comp. and App. Math., 144 (2002), 359.  doi: 10.1016/S0377-0427(01)00573-8.  Google Scholar

[28]

P. Yu and Y. Yuan, A matching pursuit technique for computing the simplest normal forms of vector fields,, J. Symbolic Computation, 35 (2003), 591.  doi: 10.1016/S0747-7171(03)00021-X.  Google Scholar

[29]

Y. Yuan and P. Yu, Computation of simplest normal forms of differential equations associated with a double-zero eigenvalues,, Internat. J. Bifur. Chaos, 11 (2001), 1307.  doi: 10.1142/S0218127401002742.  Google Scholar

[30]

P. Yu and A. Y. T. Leung, The simplest normal form of Hopf bifurcation,, Nonlinearity, 16 (2003), 277.  doi: 10.1088/0951-7715/16/1/317.  Google Scholar

[1]

Tomáš Oberhuber, Tomáš Dytrych, Kristina D. Launey, Daniel Langr, Jerry P. Draayer. Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1111-1122. doi: 10.3934/dcdss.2020383

[2]

Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347

[3]

Thomas Frenzel, Matthias Liero. Effective diffusion in thin structures via generalized gradient systems and EDP-convergence. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 395-425. doi: 10.3934/dcdss.2020345

[4]

Weinan E, Weiguo Gao. Orbital minimization with localization. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 249-264. doi: 10.3934/dcds.2009.23.249

[5]

Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1123-1132. doi: 10.3934/dcdss.2020389

[6]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[7]

Bing Yu, Lei Zhang. Global optimization-based dimer method for finding saddle points. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 741-753. doi: 10.3934/dcdsb.2020139

[8]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[9]

Jintai Ding, Zheng Zhang, Joshua Deaton. The singularity attack to the multivariate signature scheme HIMQ-3. Advances in Mathematics of Communications, 2021, 15 (1) : 65-72. doi: 10.3934/amc.2020043

[10]

Xin Zhong. Singularity formation to the nonhomogeneous magneto-micropolar fluid equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021021

[11]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[12]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[13]

Qianqian Han, Xiao-Song Yang. Qualitative analysis of a generalized Nosé-Hoover oscillator. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020346

[14]

Jie Shen, Nan Zheng. Efficient and accurate sav schemes for the generalized Zakharov systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 645-666. doi: 10.3934/dcdsb.2020262

[15]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[16]

Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286

[17]

Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002

[18]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[19]

Aihua Fan, Jörg Schmeling, Weixiao Shen. $ L^\infty $-estimation of generalized Thue-Morse trigonometric polynomials and ergodic maximization. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 297-327. doi: 10.3934/dcds.2020363

[20]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

2019 Impact Factor: 1.338

Metrics

  • PDF downloads (55)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]